مروری بر مفاهیم سطح آب زیرزمینی، بار هیدرولیکی‌، روش‌ها و خطاهای اندازه‌گیری آنها ( مقاله مروری)

نوع مقاله : مقاله مروری

نویسندگان

1 آب منطقه ای مرکزی

2 دانشگاه کردستان، گروه علوم زمین

3 شرکت آب منطقه ای مرکزی

4 علوم زمین، علوم پایه، دانشگاه کردستان، سنندج ایران

10.22034/hydro.2023.54589.1280

چکیده

سطح آب زیرزمینی، توسط هیدرولوژیست‌ها در موارد مختلف به عنوان یک متغیر کلیدی استفاده می‌شود و در ظاهر تعریف ساده‌ای دارد و به عنوان سطحی تعریف می‌شود که ناحیه اشباع و غیراشباع را از هم جدا می‌کند. اما بررسی دقیق‌تر نشان می‌دهد که بسیاری از تئوری‌های مربوط به سطح آب اغلب آن‌چنان‌که فرض می‌شود، ساده‌ نیستند و برحسب شرایط تعاریف گوناگونی برای آن وجود دارد. بار هیدرولیکی زیربنای تفسیر جریان آب زیرزمینی، کمی‌سازی ویژگی‌های آبخوان و کالیبراسیون مدل‌های جریان است و بر اساس اندازه‌گیری سطح آب در پیزومترها تعیین می‌شود. در این پژوهش مفهوم سطح آب زیرزمینی و پدیده‌های مؤثر بر آن مرور می‌شود که شامل سطح آب زیرزمینی معلق و معکوس، پدیده حباب‌های گاز در زیر سطح آب زیرزمینی، سطح آب در محیط‌های دارای تخلخل دوگانه و چندگانه، تأثیر نوسانات فشار بارومتریک بر اندازه‌گیری سطح آب در سفره‌های آزاد و تحت‌فشار، تأثیر چگالی و دما بر اندازه‌گیری سطح آب است. همچنین برخی از روش‌های مورد استفاده برای اندازه‌گیری سطح ایستابی، کاربردهای نسبی آن‌ها و نحوه اجتناب از خطاهای اندازه‌گیری، مورد بحث قرار می‌گیرد. بر اساس مرور منابع موجود، دقیق‌ترین تعریف برای سطح ایستابی، سطحی است که در آن فشار برابر با فشار اتمسفر است و مهم‌ترین و دقیق‌ترین روش‌های اندازه‌گیری سطح آب استفاده از نوار اندازه‌گیری و مبدل‌های فشار است هر چند که انبساط و انقباض حرارتی نوار فولادی و روکش آن و کشش ناشی از وزن نوار و شاقول، از مهم‌ترین خطاهای اندازه‌گیری آن است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An overview of the concepts of underground water table, hydraulic head, measurement methods and errors

نویسندگان [English]

  • Kamal Ganjalipour 1
  • mehdi kord 2
  • farhad nourozie 3
  • mohammad fathollahy 4
1 regional water company of markazi
2 Earth sciences department, science faculty, university of kurdistan
3 regional water company of Markazi
4 earth science, basic science, university of kurdistan, sanandaj, iran
چکیده [English]

The water table is used by hydrologists as a key variable in different cases. Superficially, it has a simple definition and is conventionally defined as a level where the saturated and unsaturated zones are separated in a porous media. However, a closer examination demonstrates that many theories concerning the water table are not often as simple as they are assumed to be, and there are several definitions for it based on environmental conditions. The hydraulic head is the basis for the interpretation of groundwater flow, quantification of aquifer features, and calibration of flow models that are determined based on a measurement of the water table in piezometers. This research reviews the concept of groundwater table and the phenomena effect on it. This includes perched and inverted water table, the phenomenon of gas bubbles in the saturated zone under the groundwater table, water table in media with dual and multiple porosity, the impact of barometric pressure fluctuation in water table measurement in confined and unconfined aquifers, and the effects of density and temperature on water table measurement. Moreover, the study discusses some of the methods used for water table measurement, their relative applications, and ways to avoid measurement errors. According to a review of the available resources, the water table is most accurately defined as the level where pressure is equal to atmospheric pressure, and the most significant and accurate methods of water table measurement include the use of measurement tapes and pressure transducers, although the most important measurement errors concern the thermal expansion and contraction of the steel tape and its coating and the strain arising from the weights of the tape and the plumb bob attached to it.

کلیدواژه‌ها [English]

  • Ground Water Table
  • Hydraulic Head
  • Measurement Error
  • Barometric Pressure
  • Density
  • Temperature
رمضانپور، س.، فتح اللهی، م.، کرد، م.، گنجعلی‌پور، ک.، 1400. تأثیر پرده تزریق بر ژئوشیمی آبهای زیرزمینی پایین­دست سد داریان کرمانشاه. هیدروژئولوژی، 6(1): 40-53.
ندیری، ع.، صدقی، ز.، 1398. ارزیابی آسیب­پذیری آبخوان­های چندگانه با استفاده از چهارچوب­های عملی DRASTIC، SINTACS. هیدروژئولوژی، 4(2): 188-171.
Adams, J.J. and Bachu, S., 2002. Equations of state for basin geofluids: algorithm review and intercomparison for brines. Geofluids, 2(4): 257-271.
Anderson, M.P., 2005. Heat as a ground water tracer. Groundwater, 43(6): 951-968.
Armstrong, A.C., 1983. The measurement of watertable levels in structured clay soils by means of open auger holes. Earth Surface Processes and Landforms, 8(2):183-187.
Baird, A.J. and Low, R.G., 2022. The water table: Its conceptual basis, its measurement and its usefulness as a hydrological variable. Hydrological Processes, 36(6), p.e14622.
Baird, A.J., Beckwith, C.W., Waldron, S. and Waddington, J.M., 2004. Ebullition of methane containing gas bubbles from near surface Sphagnum peat. Geophysical Research Letters, 31(21):1-4.
Basu, N.B., Rao, P.S.C., Winzeler, H.E., Kumar, S., Owens, P. and Merwade, V., 2010. Parsimonious modeling of hydrologic responses in engineered watersheds: Structural heterogeneity versus functional homogeneity. Water resources research, 46(4): 1-16.
Baveye, P.C. and Laba, M., 2015. Moving away from the geostatistical lamppost: Why, where, and how does the spatial heterogeneity of soils matter?. Ecological Modelling, 298: 24-38.
Beckwith, C.W. and Baird, A.J., 2001. Effect of biogenic gas bubbles on water flow through poorly decomposed blanket peat. Water Resources Research, 37(3): 551-558.
Beven, K. and Germann, P., 1982. Macropores and water flow in soils. Water resources research, 18(5): 1311-1325.
Beven, K. and Germann, P., 2013. Macropores and water flow in soils revisited. Water resources research, 49(6): 3071-3092.
Beven, K., 2018. A century of denial: Preferential and nonequilibrium water flow in soils, 1864‐1984. Vadose Zone Journal, 17(1): 1-17.
Binley, A., Beven, K. and Elgy, J., 1989. A physically based model of heterogeneous hillslopes: 2. Effective hydraulic conductivities. Water Resources Research, 25(6): 1227-1233.
Bond, W. J., and Collis-George, N., 1981. Ponded infiltration into simple soil systems: 1. The saturation and transition zones in the moisture content profiles. Soil Science, 131: 202–209.
Bouma, J., Dekker, L.W. and Haans, J.C.F.M., 1980. Measurement of depth to water table in a heavy clay soil. Soil Science, 130(5), 264-270.
Butler Jr, J.J., 2019. The design, performance, and analysis of slug tests. Second edition, Crc Press, 257 p.
Clark, W.E., 1967. Computing the barometric efficiency of a well. Journal of the Hydraulics Division, 93(4): 93-98. 
Cloke, H.L., Anderson, M.G., McDonnell, J.J. and Renaud, J.P., 2006. Using numerical modelling to evaluate the capillary fringe groundwater ridging hypothesis of streamflow generation. Journal of Hydrology, 316(1-4): 141-162.
Dalton, M.G., Huntsman, B.E. and Bradbury, K., 2005. Acquisition and interpretation of water-level data. In Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring, CRC Press, 893-922
Devlin, J.F. and McElwee, C.D., 2007. Effects of measurement error on horizontal hydraulic gradient estimates. Groundwater, 45(1): 62-73.
Dingman, S. L., 1994. Physical hydrology. Macmillan, 657 p.
Dingman, S.L., 1984. Fluvial hydrology. 538p.
Domenico, P.A. and Schwartz, F.W., 1997. Physical and chemical hydrogeology. John wiley & sons. 494p.
Dunnicliff, J., 1993. Geotechnical instrumentation for monitoring field performance. John Wiley & Sons, 32 p.
Faybishenko, B.A., 1995. Hydraulic behavior of quasi‐saturated soils in the presence of entrapped air: Laboratory experiments. Water Resources Research, 31(10): 2421-2435.
Fayer, M.J. and Hillel, D., 1986a. Air encapsulation: I. Measurement in a field soil. Soil Science Society of America Journal, 50(3): 568-572.
Fayer, M.J. and Hillel, D., 1986b. Air encapsulation: II. Profile water storage and shallow water table fluctuations. Soil Science Society of America Journal, 50(3): 572-577.
Fetter, C. W., 1994. Applied hydrogeology (3rd ed.). Macmillan, 615p.
Freeman, L.A., Carpenter, M.C., Rosenberry, D.O., Rousseau, J.P., Unger, R. and McLean, J.S., 2004. Use of submersible pressure transducers in water-resources investigations. US Geological Survey, Techniques of Water-Resources Investigations, 8, 65 p.
Freeze, R. A., and Cherry, J. A., 1979. Groundwater. Prentice-Hall, 624p.
Furbish, D.J., 1991. The response of water level in a well to a time series of atmospheric loading under confined conditions. Water resources research, 27(4): 557-568.
Ganjalipour, K. and Fatemi Aghda, S.M., 2019. Calibration of seepage analysis sections based on observation well monitoring data: a case study on Darian dam abutments–Kermanshah province, Iran. Modeling Earth Systems and Environment, 5: 159-173.  
Gillham, R.W., 1984. The capillary fringe and its effect on water-table response. Journal of Hydrology, 67(1-4): 307-324.
Healy, R.W. and Cook, P.G., 2002. Using groundwater levels to estimate recharge. Hydrogeology journal, 10: 91-109.
Hill, M.C. and Tiedeman, C.R., 2006. Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. John Wiley & Sons, 44 p.
Holzer, T. L., 2010. The water table. Ground Water, 48: 171–173.
Hubbert, M.K., 1940. The theory of ground-water motion. The Journal of Geology, 48(8): 785-944.
Jacob, C.E., 1940. On the flow of water in an elastic artesian aquifer. Eos, Transactions American Geophysical Union, 21(2): 574-586.
Kalbus, E., Reinstorf, F. and Schirmer, M., 2006. Measuring methods for groundwater–surface water interactions: a review. Hydrology and Earth System Sciences, 10(6): 873-887.
Kellner, E., Baird, A.J., Oosterwoud, M., Harrison, K. and Waddington, J.M., 2006. Effect of temperature and atmospheric pressure on methane (CH4) ebullition from nearsurface peats. Geophysical research letters, 33(18):1-5.
Lancellotta R., 2008. Geotechnical engineering. Taylor and Francis, New York, 520p.
Lusczynski, N.J., 1961. Head and flow of ground water of variable density. Journal of Geophysical Research, 66(12): 4247-4256.
Marinas, M., Roy, J.W. and Smith, J.E., 2013. Changes in entrapped gas content and hydraulic conductivity with pressure. Groundwater, 51(1): 41-50.
Marshall, T. J., and Holmes, J. W., 1988. Soil physics (2nd ed.). Cambridge University Press, 345p.
McWhorter, D.B. and Sunada, D.K., 1977. Ground-water hydrology and hydraulics. Water Resources Publication.
Meyer, J.R., Parker, B.L. and Cherry, J.A., 2008. Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. Environmental Geology, 56: 27-44.
Nachabe, M.H., 2002. Analytical expressions for transient specific yield and shallow water table drainage. Water resources research, 38(10): 11-1.
Peck, A.J., 1960. The water table as affected by atmospheric pressure. Journal of Geophysical Research, 65(8): 2383-2388.
Plazak, D., 1994. Differences Between Water‐Level Probes. Groundwater Monitoring & Remediation, 14(1): 84-84.
Post, V. E. A., 2011. Electrical conductivity as a proxy for groundwater density in coastal aquifers. Ground Water.
Post, V., Kooi, H. and Simmons, C., 2007. Using hydraulic head measurements in variable‐density ground water flow analyses. Groundwater, 45(6): 664-671.
Post, V.E.A., and von Asmuth, J.R., 2013. Review: Hydraulic head measurements—new technologies, classic pitfalls. Hydrogeol J., 21: 737–750.
Quilty, E.G. and Roeloffs, E.A., 1991. Removal of barometric pressure response from water level data. Journal of Geophysical Research: Solid Earth, 96(B6): 10209-10218.
Rasmussen, T.C. and Crawford, L.A., 1997. Identifying and removing barometric pressure effects in confined and unconfined aquifers. Groundwater, 35(3): 502-511.
Rau, G.C., Post, V.E., Shanafield, M., Krekeler, T., Banks, E.W. and Blum, P., 2019. Error in hydraulic head and gradient time-series measurements: a quantitative appraisal. Hydrology and Earth System Sciences, 23(9): 3603-3629.
Richards, L. A., 1954. Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, 160p.
Rosenberry, D.O. and LaBaugh, J.W., 2008. Field techniques for estimating water fluxes between surface water and ground water (No. 4-D2). Geological Survey (US).
Rosenberry, D.O., 1990. Effect of sensor error on interpretation of long-term water level data. Groundwater, 28(6): 927-936.
Rosenberry, D.O., Glaser, P.H. and Siegel, D.I., 2006. The hydrology of northern peatlands as affected by biogenic gas: current developments and research needs. Hydrological Processes, 20(17): 3601-3610.
Rushton, K.R. and Howard, K.W.F., 1982. The unreliability of open observation boreholes in unconfined aquifer pumping tests. Groundwater, 20(5): 546-550.
Schalla, R., Lewis, A.K. and Bates, D.J., 1992. Accuracy and precision of well casing surveys and water-level measurements and their impact on water-level contour maps. Geographic information systems (GIS) and mapping-practices and standards: ASTM STP, 1126: 295-309.
Schwartz, F.W. and Zhang, H., 2002. Fundamentals of ground water. John Wiley & Sons, 577 p.
Silliman, S.E. and Mantz, G., 2000. The effect of measurement error on estimating the hydraulic gradient in three dimensions. Groundwater, 38(1): 114-120.
Sokol, D., 1963. Position and fluctuations of water level in wells perforated in more than one aquifer. Journal of Geophysical Research, 68(4): 1079-1080.
Sorensen, J.P. and Butcher, A.S., 2011. Water level monitoring pressure transducers—A need for industry‐wide standards. Groundwater Monitoring & Remediation, 31(4): 56-62.
Spane, F.A., 2002. Considering barometric pressure in groundwater flow investigations. Water resources research, 38(6): 14-1.
Sweet, H.R., Rosenthal, G. and Atwood, D.F., 1990. Water level monitoring-achievable accuracy and precision. Ground Water and Vadose Zone Monitoring, edited by Nielsen, D. and Johnson, A., ASTM STP, 1053: 178-192.
Van der Kamp, G. and Keller, C.K., 1993. Casing leakage in monitoring wells: Detection, confirmation, and prevention. Groundwater Monitoring & Remediation, 13(4): 136-141.
Van Genuchten, M.T., 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5): 892-898.
Von Asmuth, J.R., Maas, K., Bakker, M. and Petersen, J., 2008. Modeling time series of ground water head fluctuations subjected to multiple stresses. Groundwater, 46(1): 30-40. 
Weeks, E.P., 1979. Barometric fluctuations in wells tapping deep unconfined aquifers. Water Resources Research, 15(5): 1167-1176.
Williams, 2008. PW. The role of the epikarst in karst and cave hydrogeology: A review. International Journal of Speleology, 37: 1-10.
Winograd, I.J., 1970. Noninstrumental Factors Affecting Measurement of Static Water Levels in Deeply Buried Aquifers and Aquitards, Nevada Test Site a. Groundwater, 8(2): 19-28.
Yamano, M., Goto, S., Miyakoshi, A., Hamamoto, H., Lubis, R.F., Monyrath, V. and Taniguchi, M., 2009. Reconstruction of the thermal environment evolution in urban areas from underground temperature distribution. Science of the total Environment, 407(9): 3120-3128.
Youngs, E.G., Leeds Harrison, P.B. and Chapman, J.M., 1989. Modelling water table movement in flat low-lying lands. Hydrological Processes, 3(4): 301-315.
Zarriello, P.J., 1995. Accuracy, Precision, and Stability of a Vibrating‐Wire Transducer Measurement System to Measure Hydraulic Head. Groundwater Monitoring & Remediation, 15(2): 157-168.
Zhao, D. and Wang, G., 2013. Removing barometric pressure effects from groundwater level and identifying main influential constituents. Science China Technological Sciences, 56: 129-136.