تهیه نقشه آسیب پذیری فرونشست زمین با استفاده از مدل WALPSRFT و روش تحلیل سلسله مراتبی-فازی (مطالعه موردی: دشت دامنه-داران در غرب استان اصفهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استاد گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استاد گروه عمران، دانشکده مهندسی عمران و معماری، دانشگاه شهید چمران اهواز، اهواز، ایران

10.22034/hydro.2022.40390.1200

چکیده

پدیده فرونشست زمین که متأثر از فعالیت‌های انسانی و پارامترهای متعدد زمین‌شناسی و هیدروژئولوژیکی است در مناطقی از ایران در درجات مختلف در حال بروز است. تهیه نقشه حساسیت فرونشست زمین یک پیش‌نیاز اساسی برای مدیریت فرونشست زمین است. ارزیابی مناسب فرونشست زمین مستلزم تعیین پارامترهای مؤثر فرونشست زمین برای کشف روابط مکانی بین آن‌ها و فرونشست زمین است. به‌ همین منظور در ابتدا با توجه به مکان‌های فرونشست زمین هشت پارامتر موثر‌ بر فرونشست در دشت دامنه-داران دو مدل تهیه گردید. در مدل اول هشت پارامتر شامل افت سالانه سطح آب زیرزمینی، محیط آبخوان، کاربری اراضی، مقدار تخلیه، ضخامت آبخوان، تغذیه خالص، فاصله از گسل و توپوگرافی به نام WALPSRFT بر اساس وزن‌دهی به پارامترها و مدل دوم بر اساس بهینه‌سازی و سازگاری هشت لایه مؤثر در فرونشست، به روش AHP-Fuzzy تهیه و نقشه نهایی آسیب‌پذیری فرونشست زمین با تلفیق لایه‌ها در ArcGIS به‌دست آمد. برای اعتبارسنجی مدل نهایی از تصاویر راداری و روش تداخل‌سنج راداری  (InSAR)استفاده شد. نتایج نشان می‌دهد که هر دو نقشه تهیه‌شده همبستگی خوبی با داده‌های راداری نشان می‌دهند و نقشه تهیه‌شده به روش سلسله مراتبی-فازی بالاترین همبستگی را با داده‌های راداری و فرونشست واقعی در دشت دامنه-داران نشان می‌دهد و آسیب‌پذیری فرونشست در آبخوان را با جزئیات بیشتری در کل سطح دشت تفکیک می‌نماید. بر اساس این مدل، اکثر مناطق دشت خصوصاً بخش شرقی در معرض فرونشست می‌باشند و برای کنترل فرونشست باید برنامه­های مدیریتی در نظر گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Land subsidence susceptibility mapping using WALPSRFT model and Fuzzy- AHP method (Case Study: Damaneh-Daran Plain in the west of Isfahan Province)

نویسندگان [English]

  • Gholamreza Rahmani 1
  • Manouchehr Chitsazan 2
  • Hamidreza Ghafoury 3
1 Ph.D. Candidate of Hydrogeology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Iran
2 Professor of Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Iran
3 Professor of Civil and Architecture Engineering, Shahid Chamran University of Ahvaz, Iran
چکیده [English]

The phenomenon of land subsidence, which is affected by human activities and various geological and hydrogeological parameters, is occurring in different parts of Iran. Land subsidence susceptibility mapping is a necessary prerequisite for land subsidence management. Proper assessment of land subsidence requires the determination of parameters affecting land subsidence to discover the spatial relationships between them and land subsidence. For this purpose, first, according to the land site subsidence, eight parameters affecting the subsidence in the Damaneh-Daran plain, two models were prepared. In the first model, eight parameters including annual groundwater level drawdown, aquifer medium, land use, pumping volume, aquifer thickness, net charge, distance from fault and topography called WALPSRFT based on weighting parameters and the second model based on optimization and compatibility of eight effective layers in subsidence, Was prepared by AHP-Fuzzy2 method and the final map of land subsidence vulnerability was obtained by combining layers in ArcGIS. Radar images and a Radar Interferometer (InSAR) were used to validate the models. The results show that both maps show a good correlation with radar data, and the map prepared by the hierarchical-fuzzy method shows the highest correlation with real radar data and subsidence in the plain. It separates in more detail on the whole surface of the plain. According to this model, most areas of the plain, especially the eastern part, are subject to subsidence, and management programs should be considered to control subsidence.

کلیدواژه‌ها [English]

  • Aquifer of Damaneh-Daran plain
  • Analytic Hierarchy Process-Fuzzy
  • Interferometry Synthetic Aperture Radar
  • land subsidence
  • WALPSRFT model
اکبری، ا.، 1391. بررسی علل ایجاد فرونشست زمین در دشت دامنه و ارائه راهکارهای مناسب جهت جلوگیری از آن. پایان‌نامه کارشناسی ارشد زمین‌شناسی مهندسی، دانشگاه اصفهان، 163ص.
حافظی مقدس، ن. غفوری، م.، 1388. زمین‌شناسی زیست‌محیطی. دانشگاه صنعتی شاهرود، 272 ص.
قدوسی پور، ح.، 1398. فرآیند تحلیل سلسله مراتبی (AHP). دانشگاه صنعتی امیرکبیر، 222 ص.
عبداللهی، س.، پورقاسمی، ح.، قنبریان، غ.، صفائیان، ر.، 1398. شبیه‌سازی مکانی و تهیه نقشه حساسیت فرونشست زمین با استفاده از مدل بیشینه آنتروپی. پژوهشنامه مدیریت حوزه آبخیز، 10(20): 133-144. 
مقدم، س. احمدی، ح. زینال زاده، ک. حصاری، ب.، 1399. مکان‌یابی پتانسیل آب‌های زیرزمینی تجدیدشونده حوضه آبریز دریاچه ارومیه با تحلیل AHP و تکنیک فازی فضایی (مطالعه موردی: دشت ارومیه). هیدروژئولوژی، 5(2): 142-154.
مهشیدنیا، ف.، 1385. بانک اطلاعات فرونشست زمین در ایران. مرحله اول: الگوی اطلاعاتی و تدوین پایگاه داده، گروه بلایای طبیعی و مدیریت بحران، پایگاه ملی داده­های علوم زمین. 158 ص.
نادری،ک. ندیری، ع. اصغری مقدم، ا. کرد، م.، 1394. روشی جدید برای شناسایی و تعیین مناطق در معرض خطر فرونشست (مطالعه موردی؛ آبخوان دشت سلماس). مجله اکوهیدورلوژی، 5(1): 85-97. 
یوسفی، ح. نوراللهی، ی. صادقی، س.، 1395. مدل‌سازی حساسیت به زمین‌لغزش با استفاده از تحلیل سلسله مراتبی و روش فازی در حوزه آبخیز طالقان. هیدروژئولوژی، 1(2): 66-82. 
Adiyaman, I. B., 2012. Land subsidence and earth fissure due to groundwater pumping. PhD thesis. University of Arizona, USA, 199p.
Bouwer H., 1993. Groundwater Hydrology. Translated by: Lotfi-Sadigh A. 13. Tabriz: Sahand University of Technology Press; (Persian):601p.
Buckley, F., O'Sullivan, K., Mee, J. F., Evans, R. D., Dillon, P. 2003. Relationships among milk yield, body condition, cow weight, and reproduction in spring-calved Holstein-Friesians. J. Dairy Sci, 86: 2308–231.
Budhu, M., Adiyaman, I. B. 2010. Mechanics of land subsidence due to groundwater pumping. International journal for numerical and analytical methods in geomechanics, 34(14): 1459-1478.
Chaussard, E., Wdowinski, Sh., Cano, E, C., Amelunga, F. 2014. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sensing of Environment, 140: 94-106.
Chen, B., Gong. H., Li. X., Lei. K., Ke, Y., Duan, G., Zhou, Ch. 2014. Spatial correlation between land subsidence and urbanization in Beijing, China. Natural Hazards, 75: 2637–2652.
Firdaus. H. S., Prasetyo, Y., Diyanah, D. 2018. Spatial Correlation Analysis of Land Subsidence and the Water Table Changes in Unconfined Aquifers Using Sentinel1-SAR Image and Geographic Information Systems (Case Study: Semarang City – Indonesia). E3S Web of Conferences, 73:03022, 1-5.
Galloway, D. L., Hoffmann, J. r. 2007. The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeology Journal, 15: 133-154.
Lin, H., Kao, J., Li, K., and H. Hwang. 1996. Fuzzy GIS assisted landfill silting analysis proceedings of international conference on Solid waste technology and management.
Malczewski, J. 1999. GIS AND Multi Criteria Decision Analysis. John Wiley and so as Inc, 408p.
MarÍa, J., Jimenez, M., Joven, J. A., Pirla, A. R., Lanuza, A. T. 2005. A spreadsheet module for consistent consensus building in AHP-group decision making, Group Decision and Negotiation, 14:89–108.
Marín, M. H., Burbey, J. T., Cervantes, N.L., José, Á. O., De-Leon, M. E., Pintoc, A. S. 2013. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley. México. Engineering Geology, 164: 172-186.
Motagh, M., Thomas, R. W., Sharifi, M. A., Fielding, E., Schenk, A., Andersson, J., Zschau, J. 2008. Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophysical Research Letters, 35: L16403.
Nadiri, A., Taheri, Z., Khatibi, R., Barzegari, Gh., Dideban, K.h 2018. Introducing a new framework for mapping subsidence vulnerability indices (SVIs): ALPRIFT. Science of the Total Environment, 628–629: 1043–1057.
Niekerk, V., Walt, V. D. 2006. Dewatering of the Far West Rand dolomitic area by gold mining activities and subsequent ground instability. Land Degradation and Development, 17(4):441-452.
Raucoules, D., Colesanti, C., Carnec, C., 2007. Use of SAR interferometry for detecting and assessing ground subsidence. C. R. Geoscience, 339: 289-302.
Scanlon, B., Healy, R., Cook, P., 2002. Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Journal of Hydrology, 10(1): 18-39.
Trinh, M.T., Fredlund, D.G. 2000. Modeling subsidence due to ground water extraction in the Hannoi city area. Journal of geology technology; 37: 621-637.
Tzeng, G.H., Teng, M.H. 2002. Multicriteria selection for a restaurant location in Taipei, International Journal of Hospitality Management, 21: 171–187.
Yin, J., Yu, D., Wilby, R. 2016. Modelling the impact of land subsidence on urban pluvial flooding: A case study of downtown Shanghai, China. Science of the total environment, 544: 744-753.
Zhu, L., Gong, H., Teatini, P., Xiaojuan, L., Wang, R., Chen, B., Dai, Z. 2015. Land Subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193: 243-255.