هیدروژئوشیمی سیالات گرمابی مخازن ژئوترمال غرب سبلان- شمال‌غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

2 دانشجوی دکتری زمین‌شناسی اقتصادی، دانشگاه تبریز

3 کارشناسی ارشد پترولوژی، دانشگاه تهران

4 دکتری مکانیک سیالات، سازمان انرژی‌های تجدیدپذیر ایران، تهران

چکیده

      منبع زمین‌گرمایی شمال غرب سبلان به علت قرار داشتن در محدوده‌ی آتشفشان‌های فعال عهد حاضر، وجود منبع گرمایی در عمق چند هزار متری و دارا بودن دمای مخزن بالای150 درجه سانتی­گراد (تقریباً 240 درجه سانتی‌گراد) و تزریق ماگما به زیر لایه‌های زیر مخزن در دسته‌ی سیستم‌های زمین گرمایی همرفتی دارای آنتالپی زیاد که از لحاظ فاز مایع نسبت به فاز بخار غالب است، قرار می‌گیرد. از لحاظ ترکیب چشمه‌های مشکین‌شهر بیش‌تر در محدوده‌ی آب‌های دارای ترکیب سدیم – کلرید، سدیم- بی‌کربنات و سدیم- سولفات قرار می‌گیرند و سیالات چاه­های اکتشافی در محدوده­ی سدیم- کلرید قرار می­گیرند در این مطالعه از چاه­های اکتشافی حفر شده در سایت بهره­برداری از انرژی گرمابی واقع در شمال­غرب سبلان (NWS-1, NWS-3,NWS-4) نمونه­برداری و ترکیب شیمیایی و ایزوتوپی این نمونه­ها ارزیابی شده است. آب­های مشکین‌شهر در زیر خط تعادل بخشی در محدوده‌ی آب‌های ایممچور در گوشه‌ی Mg و سیالات چاه­ها نزدیک به خط تعادل کامل قرار گرفته‌اند. آب‌ها (ایممچور) دمای تقریبی در حدود 250 درجه‌ی سانتی‌گراد و سیالات چاه­ها دمایی در حدود 280 درجه­ی سانتی­گراد برای مخزن ژئوترمال را نشان می‌دهند. با توجه به لیتولوژی منطقه مهم‌ترین روش شیمیایی برای ترمومتری آب‌های گرمابی در این ناحیه روش Na- K است، در چشمه­های شمال غرب ژئوترمومترهای اندازه‌گیری شده به ترتیب دمایی در حدود 270-220،140-50، 230-30، 160-90 درجه­ی سانتی­گراد نشان می­دهند. میزان تریتیوم در این سیالات نشان‌دهنده‌ی اختلاط با آب‌های زیرزمینی جوان است. رنج Dδ و 18Oδ برای چشمه‌های شمال غرب سبلان به ترتیب از 8- تا 13- و 85- تا 70- در هزار است. این آب­ها در محدوده­ی آب­های متئوریتی قرار گرفته­اند. با توجه به داده‌های 13Cδ حاصل از آنالیز CO2 جمع شده از سیالات منطقه به احتمال زیاد منشأ CO2 آب‌های منطقه‌ی سبلان سنگ آهک است.

کلیدواژه‌ها


عنوان مقاله [English]

Hydrochemistry of Hydrothermal Fluids Geothermal Reservoirs of West Sabalan - North-West of Iran

نویسندگان [English]

  • Seyed ghafour Alavi 1
  • hossein naseri 2
  • mahnaz jamadi 3
  • soheil porkhial 4
1 Earth sciences, Faculty of Natural Sciences, university of tabriz, Tabriz, Iran.
2 Erth sciences, faculty of natural scinces, university if tabriz, tabriz, iran
3 tabriz
4 azad eslami karaj
چکیده [English]

The geothermal source of the northern West of Sabalan, due to its presence in the active volcanoes of the present century, has a thermal source at a depth of several thousand meters and has a reservoir temperature of 150 °C (approximately 240 °C) and injection of magma under the layers below the reservoir In the category of convective geothermal systems, it has a high enthalpy that predominates in terms of the liquid phase relative to the vapor phase. In this study, wells Sampling and chemical composition and isotopic composition of these samples have been evaluated on the site of hydrothermal energy utilization in Sabalan North-West (NWS-1, NWS-3, NWS-4). Meshkinshahr water under the line of equilibrium in the range of immature water in the corner of the Mg and the fluids of the wells is close to the line of full equilibrium. The water (immature) has an approximate temperature of 250 ° C and fluids in the wells at about 280 ° C for a geothermal reservoir. According to the lithology of the region, the most important chemical method for the thermometry of hydrothermal waters in this area is the Na- K method, in the northwest sources of geometric measurements, the temperature is about 270-220, 140, 50, 30-30, 160-90 Centigrade degree. Tritium levels in these fluids indicate mixing with young groundwater. The range of δD and δ18O for the springs north of Sabalan are from 8 to 13, and 85 to 70, respectively. These are in the range of methionine water. According to the δ13C data obtained from the analysis of CO2 collected from the region's fluids, it is likely that the CO2 originates from the Sabalan region of limestone.

کلیدواژه‌ها [English]

  • Keywords: Geothermal reservoirs
  • Hydrogeochemistry
  • Iran
  • Isotope
  • sabalan
 حسن زاده، ب؛  عباس نژاد، ا.، 1397. فرآیندهای هیدروژئوشیمیایی مؤثر بر کیفیت منابع آب زیرزمینی بخش میانی دشت نوق (غرب استان کرمان). هیدروژئولوژی، دوره 3، شماره 2، زمستان 1397، صفحه 58-46.
سحابی، ف.، 1387. بررسی آتشفشان سبلان با توجه خاص بر روند تشکیل منابع زمین گرمایی مشکین‌شهر- استان اردبیل، مجله علوم زمین، پژوهشکده علوم زمین- سازمان زمین‌شناسی و اکتشافات معدنی کشور، شماره 32-31.
 هادیپور هفشجانی، ز؛ حمیدرضا ناصری، ح؛  علیجانی، ف.، 1397. فرآیندهای هیدروژئوشیمی آبخوان کوهدشت. هیدروژئولوژی، دوره 3، شماره 1، تابستان 1397، صفحه46-32.
Ahmad, M., Akram, W., Ahmad, N. 2002. Assesment of reservoir temperatures of thermal springs of the northern areas of Pakistan by chemical and isotope geothermometry. Journal of Geothermics. 31: 613-631.
Alavi, M., 2007. Structure of the Zagros fold-thrust belt in Iran. American Journal of Sciences. 307: 1064 – 1095.
Arnosson, S., Gunnlaugsson, E., Svavarsoon, H. 1983. The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim. Journal of Cosmochim. 42: 567–577.
Arnorsson, S. 1985. The use of mixing models and chemicalgeothermometers for estimating undergroundtemperatures in geothermal systems. Journal of Volcanology and Geothermal Research. 23: 299-335.
Bogie, I., Cartwright, A.J., Khosrawi, K., Talebi, B. and Sahabi, F. 2000. The Meshkin Shahr geothermal prospect, Iran. Proceedings, World Geothermal Congress. 1: 997-1002.
Bromley, C., Khosrawi, K., Talebi, B. 2000. Geophysical exploration of Sabalan geothermal prospects in Iran.Proceedings World Geothermal Congress, Kyushu- Tohoku, Japan, May 28- June 10.
Combs, j. and Muffler, L. 1973. Exploration for geothermal rsources, in: kruger, p. and Otte., eds., Geothermal Energy, Stanford University press, Standard,:pp.128-95.
Fouillac, C., Michard, G. 1981. Sodium/lithium ratios in water applied to geothermometry of geothermal reservoirs. Journal of Geothermics. 10: 55–70.
Fournier, R. O. and Truesdell, A. H. 1973. An empirical Na- K- Ca geothermometer for natural waters. Geochim. Journal of cosmochim. 37: 1255 - 1276.
Giggenbach, W. 1988. Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim. Journal of Cosmochim. 52: 2749–2756.
Giggenbach, W.F. 1991. Chemical techniques in geothermal exploration. Application of Geochemistry in Geothermal Reservoir Development (Co-ordinator D'Amore, F.). UNITAR/UNDP Centre on Small Energy Resources, Rome. 119–144.
Giggenbach, W., 1992. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Journal of Earth Planet Science. 113: 495–510.
Masoumi, R., Calagari, A.A., Siahcheshm, K., Porkhial, S., Pichler, T. 2017. Consideration of geological aspectsand geochemical parameters of fluids in Bushdi geothermalfield, south of mount Sabalan, NW Iran. Journal ofAfrican Earth Sciences. 129: 692-700.
Masoumi, R., Calagari, A., Siahcheshm, K., Porkhial, S. 2016. Hydrogeochemistry and origin of hydrothermal fluids on the basis of isotopic data in Sabalan geothermal system. Quaternary  journal of Iran. 2: 183-196.
Giggenbach, W. 1997a. The origin and evolution of fluids in magmatic–hudrothermal systems, In: Barnes, H.L. (Ed.),Geochemistry of Hydrothermal Ore Deposits, 3rd Edition. Jone Wiley and Sonc, Inc, New York, NY, pp. 737–796.
Giggenbach, W., 1997b. The origin and evolution of fluids in magmatic-hydrothermal systems, In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, 3rd ed. Wiley, New York, NY, pp. 737–796.
Kharaka, Y.K., Lico, M.S., Law, L.M. 1982. Chemical geothermometers applied to formation waters, Gulf ofMexico and California basins. Am. Assoc. Petrol .Geol. Bull, 66: 588- 597.
KML(Kingestton Morrison Ltd). 1999. Final report on detailed geological mapping ,assessment and targeting of exploration drilling area, NW. Sabalan.
Noorollahi, Y., Itoi, R., Fujii, H. and Tanaka, T. 2008. GIS integration model for geothermal exploration and well siting. Journal of Geothermics. 37: 107-131.
Saffarzadeh, A., Noorollahi, Y. 2005. Geothermal development in Iran: A country update. Proceedings WorldGeothermal Congress, Antalya, Turkey, 24-29 April.
Shakeri, A.,Moore,F.,Kompani-Zare., 2008.Geochemistry of the thermal springs of Mount Taftan,southeastern Iran. Journal of Volcanology and Geothermal Research. 33: 829-836.
Talebi, B., Rezvani, M. 2005. An analysis of well measurements from the Sabalan geothermal area, NW Iran.Proceedings World Geothermal Congress, Antalya, Turkey, 24-29 April.
Porkhial, S., Rigor, D.M., Bayrante, L.F., Layugan, D.B. 2010a. Magnetotelluric survey of NW Sabalan geothermalproject, Iran. Proceedings WorldGeothermal Congress, Bali, Indonesia. 25-29 April.
Porkhial, S., Ghomshei, M.M., Yousefi, P. 2010b. Stable Isotope and Elemental Chemistry of Mt. SabalanGeothermal Field, Ardebil Province of North West Iran, Proceedings World Geothermal Congress, Bali,Indonesia. 25-29 April.
Yousefi, H., Noorollahi, Y., Ehara, S., Itoi, R., Yousefi, A. 2010. Developing the geothermal resources map of Iran.Journal of Geothermics. 39: 140-151.
Yousefi, H., Ehara, S., Noorollahi, Y. 2007. Geothermal potential site selection using GIS in Iran. Proceeding of32nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, January 22-24: 174-182.