تحلیل وضعیت پوشش گیاهی کسری (FVC) با کاربرد تصاویر ماهواره‌‌ای لندست در دشت شبستر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبیاری و زهکشی، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

2 دانشیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

3 محقق بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران.

10.22034/hydro.2024.62186.1315

چکیده

آب از مهم‌ترین زیر ساخت توسعه در بخش‌های مختلف اجتماعی و اقتصادی کشور به شمار می‌آید. بخش کشاورزی عمده­ترین مصرف کننده آب در حوضه­های آبریز کشور است. پوشش گیاهی اصلی­ترین اجزای اکوسیستم بوده و نقش مهمی در حفظ ثبات منطقه­ای و تنظیم آب و هوا دارد. گیاهان مهم­­ترین تولیدکننده هر اکوسیستم بوده و عوامل زیادی آن را منعکس می‌کنند. شاخص­های گیاهی مانند LAI، NDVI و FVC در مطالعه بیلان آب، تبخیرتعرق و خشکسالی در حوضه­های مختلف نقش کلیدی دارند. از بین آن‌ها، شاخص پوشش گیاهی کسری (FVC) یک پارامتر مهم اکولوژیکی برای توضیح تنوع پوشش گیاهی و زیستی بوده و هدف از این پژوهش بررسی تغییرات شاخص FVC از سال 2016 تا 2023 و ارزیابی تغییر تراکم پوشش گیاهی و نیز بررسی عوامل مؤثر بر پوشش گیاهی در دشت شبستر می­باشد. در مطالعه حاضر با استفاده از تصاویر ماهواره‌ای لندست 8 و 9 مقادیر FVC سال­های مورد مطالعه استخراج گردید و به­صورت کلی و به تفکیک پوشش اراضی مختلف بررسی شد. نتایج نشان داد مقادیر FVC در طول مطالعه حدوداً افزایشی بوده و تقریباً رابطه مستقیمی با بارش و معکوس با دمای سطح زمین دارد. متوسط مقدار FVC دشت شبستر در سال­های مورد مطالعه 57/0 و برای کاربری­­های باغی بالای 80/0 بدست آمد. روند تغییرات FVC و LST نشان داد در سال­های دارای پوشش گیاهی بالا به دلیل افزایش تبخیرتعرق و استهلاک انرژی، دما تعدیل شده است. نتایج این تحقیق علاوه‌بر اهمیت FVC در مطالعات آب و کشاورزی، نقش آ‌ن‌را در کاهش گرمای مناطق مسکونی نیز تایید می­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of Fractional Vegetation Cover (FVC) status using Landsat satellite images in the Shabstar Plain

نویسندگان [English]

  • Aylar Mohammadi 1
  • Abolfazl Maajnooni 2
  • Reza hassanpour 3
1 Master's student of irrigation and drainage, Department of Water Engineering, University of Tabriz, Tabriz, Iran.
2 Associated Professor, Department of Water Engineering, University of Tabriz, Tabriz, Iran.
3 Researcher, Soil and Water, Research Department, East. Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
چکیده [English]

Water is a crucial infrastructure for various social and economic sectors. The agricultural sector is the largest water consumer in the country's watersheds. Vegetation is crucial for maintaining regional stability, regulating climate and producing oxygen. Vegetation indices such as leaf area index (LAI), NDVI index and fractional vegetation cover index (FVC) are important for studying water balance, evapotranspiration and drought in different basins. Fractional vegetation cover index (FVC) is particularly sensitive and helps to understand changes in vegetation density. A recent study used Landsat 8 and 9 satellite images to analyze FVC values ​​from 2016 to 2023 in the Shabestar plain. The FVC values ​​were found to increase slightly in the years studied, showing a direct relationship with precipitation and an inverse relationship with land surface temperature (LST). The average FVC index for the Shabestar plain was 0.57, while for garden areas it was over 0.80. The results showed that in years with high vegetation cover, temperature was moderated due to increased evapotranspiration and energy consumption.

کلیدواژه‌ها [English]

  • Leaf area index
  • Land use
  • Land surface temperature
  • Remote sensing
  • Vegetation
خالدی، م.، مجنونی هریس، ا.، و فاخری فرد، ا.، (1397). تعیین هدایت هیدرولیکی بر اساس قابلیت انتقال تصحیح شده و تأثیر تراکم چاه ها و مازاد برداشت آب بر آبخوان دشت شبستر. هیدروژئولوژی، 3(2 )، 19-32.
دین­پژوه، ی.، فاخری فرد، ا.، حسن پور اقدام م.ع. و بهشتی وایفان، و.، (2015). تحلیل روند تغییرات کیفیت آب زیرزمینی در دشت شبستر‌-‌صوفیان. علوم و مهندسی آبیاری، 38(1)، 55-69.‎
علیپور، ح.، اخوان قالیباف، م.، قلیوف، الف.، کورنووا، الف.، مختاری، م.ح.، (1400). استفاده از الگوریتم SEBAL و تصاویر سنجنده MODIS جهت تخمین تبخیر و تعرق واقعی (مطالعه موردی: حوضه آبریز دریاچه ارومیه). هیدروژئولوژی، انتشار آنلاین.
ناطقی، س.، گوهردوست، الف.، سلیمانی ساردو، ف.، (1402). واکاوی اثر پوشش گیاهی بر وقوع پدیده گرد و غبار (مطالعه موردی: استان هرمزگان). مجله پژوهش‌های فرسایش محیطی، 12(2), 43-60.‎
Anees, S.A., Zhang, X., Shakeel, M., Kahtani, M. Khan, K., Akram, M., Ghramh, H.A., (2022). Estimation of fractional vegetation cover dynamics based on satellite remote sensing in pakistan: A comprehensive study on the FVC and its drivers. Journal of King Saud University, 34:101848.
Bafitlhile, T. M., Liu, Y., (2022). Temperature contributes more than precipitation to the greening of the Tibetan Plateau during 1982–2019. Theoretical and Applied Climatology, 1-18.
Cao, Q., Yu, D., Georgescu, M., Han, Z., Wu, J., (2015). Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China. Environmental Research Letters, 10(12), 124025.
  Chand, T.K., Badarinath, K., Prasad, V.K., Murthy, M., Elvidge, C.D., Tuttle, B.T., (2006). Monitoring forest fires over the Indian region using Defense Meteorological Satellite Program-Operational Linescan System nighttime satellite data. Remote Sens. Environ. 103 (2), 165–178.
Chen, J.M., Blanken, P.D., Black, T.A., Guilbeault, M., Chen, S., (1997). Radiation regime and canopy architecture in a boreal aspen forest. Agricultural and Forest Meteorology, 86 (1-2), 107-125.
Deng, X., Hu, S., Zhan, C., (2022). Attribution of vegetation coverage change to climate change and human activities based on the geographic detectors in the Yellow River Basin, China. Environmental Science and Pollution Research, 29 (29), 44693-44708.
Estel, S., Kuemmerle, T., Alcántara, C., Levers, C., Prishchepov, A., Hostert, P., (2015). Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sensing of Environment, 163, 312-325.
Feng, D., Fu, M., Sun, Y., Bao, W., Zhang, M., Zhang, Y., Wu, J., (2021). How large-scale anthropogenic activities influence vegetation cover change in China? A review. Forests, 12 (3), 320. 
Fu, B., Yang, W., Yao, H., He, H., Lan, G., Gao, E., Chen, Z., (2022). Evaluation of spatio-temporal variations of FVC and its relationship with climate change using GEE and Landsat images in Ganjiang River Basin. Geocarto International, 37 (26), 13658-13688.
Gao, L., Wang, X., Johnson, B.A., Tian, Q., Wang, Y., Verrelst, J., Gu, X., (2020). Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 364-377.
Gitelson, A.A., Kaufman, Y.J., Stark, R., Rundquist, D., (2002). Novel algorithms for remote estimation of vegetation fraction. Remote sensing of Environment, 80 (1), 76-87.
Gu, Z., Zhang, Z., Yang, J., Wang, L., (2022). Quantifying the influences of driving factors on vegetation EVI changes using structural equation model: A case study in Anhui province, China. Remote Sensing, 14 (17), 4203.
Hassanpour, R., Majnooni-Heris, A., Fakheri Fard, A., Verrelst J., (2024). Monitoring Biophysical Variables (FVC, LAI, LCab, and CWC) and Cropland Dynamics at Field Scale Using Sentinel-2 Time Series, Remote Sensing, 16, 2284.
Haynes, W.M. (Ed.)., (2014). CRC Handbook of Chemistry and Physics (95th.). CRC Press.
He, J., Shi, X., Fu, Y., (2021). Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. Journal of Environmental Management, 289, 112562.
Huang, K., Zhang, Y., Zhu, J., Liu, Y., Zu, J., Zhang, J., (2016). The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sensing, 8 (10), 876.
Jeihouni, E., Mohammadi, M., Ghazi, B., (2021). Response of the Shabestar Plain aquifer to climate-change scenarios through statistical and hybrid soft computing techniques. Groundwater for Sustainable Development, 15, 100649.
Jiang, M., He, Y., Song, C., Pan, Y., Qiu, T., Tian, S., (2021). Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China. Science of the Total Environment, 786, 147574.
Jiang, W., Niu, Z., Wang, L., Yao, R., Gui, X., Xiang, F., Ji, Y., (2022). Impacts of drought and climatic factors on vegetation dynamics in the Yellow River Basin and Yangtze River Basin, China. Remote Sensing, 14 (4), 930.
Kang, Y., Guo, E., Wang, Y., Bao, Y., Bao, Y., & Mandula, N., (2021). Monitoring vegetation change and its potential drivers in Inner Mongolia from 2000 to 2019. Remote Sensing, 13 (17), 3357.
Leroux, L., Bégué, A., Seen, D. L., Jolivot, A., Kayitakire, F., (2017). Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sensing of Environment, 191, 38-54.
Lin, M., Hou, L., Qi, Z., Wan, L., (2022). Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000–2019. Ecological Indicators, 142, 109164.
Liu, H., Li, X., Mao, F., Zhang, M., Zhu, D. E., He, S., Du, H., (2021). Spatiotemporal evolution of fractional vegetation cover and its response to climate change based on MODIS data in the subtropical region of China. Remote Sensing, 13 (5), 913.
Liu, H., Liu, F., Yuan, H., Zheng, L., Zhang, Y., (2022). Assessing the relative role of climate and human activities on vegetation cover changes in the up–down stream of Danjiangkou, China. Journal of Plant Ecology, 15 (1), 180-195.
Liu, Y., Tian, J., Liu, R., Ding, L., (2021). Influences of climate change and human activities on NDVI changes in China. Remote Sensing, 13(21), 4326.
Liu, Z., Liu, Y., Li, Y., (2018). Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China. Ecological Indicators, 95, 370-378.
Mallick, J., AlMesfer, M.K., Singh, V.P., Falqi, I.I., Singh, C.K., Alsubih, M., Kahla, N.B., (2021). Evaluating the NDVI–rainfall relationship in Bisha watershed, Saudi Arabia using non-stationary modeling technique. Atmosphere, 12 (5), 593.
Na, R., Na, L., Du, H., He, H. S., Shan, Y., Zong, S., and Wu, Z., (2021). Vegetation greenness variations and response to climate change in the arid and semi-arid transition zone of the Mongo-Lian Plateau during 1982–2015. Remote Sensing, 13 (20), 4066.
Nilson, T., (1971). A theoretical analysis of the frequency of gaps in plant stands. Agricultural meteorology, 8, 25-38.
Rajeshwari, A., & Mani, N. D., (2014). Estimation of land surface temperature of Dindigul district using Landsat 8 data. International journal of research in engineering and technology, 3(5), 122-126.
Salwan, A. A., Ahmed, A. A., & Salim, M. A., (2021). Using ArcGIS Software and Remote Sensing Technology to Predict Land Surface Temperature (LST) for Monitoring Ecological and Climate Change in Hor Al-Dalmaj, Southern Iraq. In IOP Conference Series: Earth and Environmental Science, 790 (1), 012076.
Shi, S., Yu, J., Wang, F., Wang, P., Zhang, Y., Jin, K., (2021). Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Science of the Total Environment, 755, 142419.
Shobairi, S.O. R., Usoltsev, V. A., Chasovskikh, V. P., (2018). Dynamic estimation model of vegetation fractional coverage and drivers. International Journal of Advanced and Applied Sciences, 5 (3), 60-66.
Song, W., Mu, X., McVicar, T. R., Knyazikhin, Y., Liu, X., Wang, L., Yan, G., (2022). Global quasi-daily fractional vegetation cover estimated from the DSCOVR EPIC directional hotspot dataset. Remote Sensing of Environment, 269, 112835.
Sun, J., Cheng, G., Li, W., Sha, Y., Yang, Y., (2013). On the variation of NDVI with the principal climatic elements in the Tibetan Plateau. Remote Sensing, 5 (4), 1894-1911.
Tang, Z., Ma, J., Peng, H., Wang, S., Wei, J., (2017). Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang river basin. Advances in Space Research, 60 (5), 969-979.
Thouverai, E., Marcantonio, M., Cosma, E., Bottegoni, F., Gatti, R.C., Conti, L., Rocchini, D., (2023). Helical graphs to visualize the NDVI temporal variation of forest vegetation in an open-source space. Ecological Informatics, 74, 101956.
Tucker, C. J., Choudhury, B. J., (1987). Satellite remote sensing of drought conditions. Remote sensing of Environment, 23 (2), 243-251.
Wang, G., Peng, W., (2022). Quantifying spatiotemporal dynamics of vegetation and its differentiation mechanism based on geographical detector. Environmental Science and Pollution Research, 29 (21), 32016-32031.
Wang, H., Gui, D., Liu, Q., Feng, X., Qu, J., Zhao, J., Wei, G., (2024). Vegetation coverage precisely extracting and driving factors analysis in drylands. Ecological Informatics, 79, 102409.
Wang, J., Sun, H., Xiong, J., He, D., Cheng, W., Ye, C., Huang, X., (2021). Dynamics and drivers of vegetation phenology in three-river headwaters region based on the Google Earth engine. Remote Sensing, 13 (13), 2528.
Xue, J., Wang, Y., Teng, H., Wang, N., Li, D., Peng, J., Shi, Z., (2021). Dynamics of vegetation greenness and its response to climate change in Xinjiang over the past two decades. Remote Sensing, 13 (20), 4063.
Xue, L., Kappas, M., Wyss, D., Wang, C., Putzenlechner, B., Thi, N.P., Chen, J., (2022). Assessment of climate change and human activities on vegetation development in Northeast China. Sensors, 22 (7), 2509.
Yang, K., Sun, W., Luo, Y., Zhao, L., (2021). Impact of urban expansion on vegetation: The case of China (2000–2018). Journal of environmental management, 291, 112598.
Yang, S., Song, S., Li, F., Yu, M., Yu, G., Zhang, Q., Wu, Y., (2022). Vegetation coverage changes driven by a combination of climate change and human activities in Ethiopia, 2003–2018. Ecological Informatics, 71, 101776.
Zhao, X., Tan, S., Li, Y., Wu, H., Wu, R., (2024). Quantitative analysis of fractional vegetation cover in southern Sichuan urban agglomeration using optimal parameter geographic detector model, China. Ecological Indicators, 158, 111529.