تحلیل سناریوهای مختلف به‌کارگیری کنتور هوشمند حجمی برای افزایش اثربخشی طرح احیا و تعادل بخشی آب‌های زیرزمینی با استفاده از مدل عامل‌بنیان در دشت قزوین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 معاون مدیرکل دفتر توسعه نظام فنی و بهره برداری شرکت مدیریت منابع آب ایران

2 دانشیار، گروه علوم و مهندسی آب، دانشکده علوم کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران.

3 دانشیار گروه مهندسی آبیاری‌ و آبادانی، دانشکده کشاورزی، دانشگاه تهران، تهران، ایران.

4 استاد، گروه علوم و مهندسی آب، دانشکده علوم کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران.

چکیده

منابع آب زیرزمینی ایران به­دلیل برداشت بیش از حد و خشکسالی­های متوالی سالیان اخیر و حفر چاه‌های غیر­مجاز و نبود ساز و­ کار نظارتی قوی از شرایط مناسبی برخوردار نیست و در برخی مناطق از جمله دشت قزوین با بحران روبرو می‌باشد. یکی از مهم‌ترین عوامل برهم‌زننده تعادل آبخوان‌ها، برداشت مازاد بر میزان مجاز توسط چاه‌های مجاز می‌باشد. کنتور تنها ابزار مناسب برای پایش و کنترل برداشت آب از چاه‌ها است. با توجه به اینکه روش‌ها و راهکارهای مختلفی برای نصب کنتور وجود دارد در این مقاله سعی شده با استفاده از مدل عامل‌بنیان (ABM) بهترین سناریو برای نصب کنتور هوشمند بر روی چاه‌های آب تعیین شود. سناریوهای تعریف شده شامل خرید و نصب رایگان کنتور هوشمند حجمی با اعتبارات دولتی برای کلیه بهره‌برداران، خرید و نصب کنتور هوشمند حجمی با ارائه تسهیلات و خرید و نصب کنتور هوشمند حجمی به صورت نقدی توسط بهره‌بردار می‌باشد. با توجه به اینکه انواع مختلف چاه‌ها از نظر نوع کشت تحت شرب (پربازده و کم بازده بودن)، وضعیت مالکیت (تک مالکی یا چندمالکی) و نوع کنتور  ولتمن (WI)، الکترومغناطیس (Em) و آلتراسونیک (As) در این پژوهش مورد بررسی قرارگرفته تعداد سناریوها که از تلفیق آن‌ها  بوجود خواهد آمد بسیار بیشتر خواهد شد. این سناریوها با استفاده نرم‌‌افزار متلب مورد بررسی و تحلیل قرارگرفته است. نتایج نشان‌داد انتخاب نوع کنتور هوشمند حجمی باید با توجه به دسته‌بندی چاه‌ها براساس نوع مصرف، تعداد مالک، نوع کشت و اقتصادی یا غیراقتصادی بودن محصول صورت گیرد. همچنین چاه‌های صنعتی تمایل دارند، کنتور هوشمند حجمی Em را به­صورت نقد خریداری و نصب نمایند. ولی در بخش کشاورزی بیشتر تمایل به خرید کنتور WI به‌دلیل ارزان­تر بودن است. نصب کنتور بر روی چاه‌های منطقه موجب کاهش برداشت شده و شیب افت هیدروگراف دشت اندکی کاهش یافته شده است. پیش­بینی می‌شود ادامه این روند به بهبود وضعیت آبخوان کمک مؤثری نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of different scenarios of using smart meter to increase the effectiveness of Groundwater Restoration and Balancing Plan using the Agent Base Model in Qazvin Plain

نویسندگان [English]

  • Hamid rahmani 1
  • Ali Saremi 2
  • Shahab Iraqi nejad 3
  • Hossein Babazadeh 4
1 Deputy Director General of Technical Systems and Operation Office of Iran Water Resources Management Company.
2 Associate Professor, Department of Water Science and Engineering, Faculty of Agricultural Sciences and Food Industry, Islamic Azad University, Science and Research Unit, Tehran, Iran.
3 Associate Professor, Department of Irrigation and Development Engineering, Faculty of Agriculture, University of Tehran, Tehran, Iran.
4 Professor, Department of Water Science and Engineering, Faculty of Agricultural Sciences and Food Industry, Islamic Azad University, Science and Research Unit, Tehran, Iran.
چکیده [English]

Groundwater resources of Iran do not have suitable condition due to over-harvesting, consecutive droughts in recent years, drilling of unauthorized wells, and lack of a strong monitoring mechanism. Some regions, including the Qazvin plain, are facing crises consequently. One of the major factors in disrupting the balance of aquifers is exceeding the permitted amount extraction of the permitted wells. Water meter is the only reliable tool for monitoring and controlling water withdrawal from wells. Since 2014, volumetric smart meters have been used to measure and control withdrawal from the groundwater resources in Qazvin Plain. Considering that there are different methods and solutions for installing the meter, this article investigates the best scenarios for installing smart meters on water wells using the agent-based model (ABM). The defined scenarios include the purchase and installation of smart meters with government credits for free for all users, the purchase and installation of smart meters companied with provision of facilities, and the purchase and installation of a smart meter in cash by the user. Considering that different types of wells have been examined in this research in terms of the type of irrigation (high yield and low yield), ownership status (single owner or multi owner) and meter type (Waltman WI, electromagnetic Em and ultrasonic As), the number of probable scenarios will be much higher. These scenarios have been investigated and analyzed using the MATLAB software. The results showed that choosing the type of smart meter should be done according to the classification of wells based on the type of consumption, the number of owners, the type of cultivation and whether the product is economic or non-economic. The cost of buying and installing the meter should be paid by the owner or owners so that it is properly protected and used in the future. Also, industrial wells tend to purchase and install the Em smart meter in cash. However, In the agricultural sector, there is more desire to buy the WI smart meter because it is cheaper. In general, the installation of the meter has the greatest effect on creating a balance between resources and uses due to its direct effect on water withdrawal from the aquifer. If the meter is not installed, other attempts on the rehabilitation and balancing will remain ineffective. Installing the meter on the wells in the area has reduced the harvest and as a result, the slope of the plain's hydrograph has decreased slightly. It is expected that the continuation of this process will help to improve the condition of the aquifer.

کلیدواژه‌ها [English]

  • Agent-based model (ABM)
  • Aquifer
  • Groundwater resources
  • Groundwater restoration and balancing plan
  • Qazvin Plain
  • Water meter
احمدی، م.، رمضانی اعتدالی، هـ.، 1401. کاربردپذیری پایگاه‌ بارشی GLDAS در برآورد ردپای آب سبز و آبی گندم و ذرت در دشت قزوین با استفاده از مدل Aqua Crop. هیدروژئولوژی، (2)7: 42-30.
کلانتری، ن.، ایرانی اصل، ا.، محمدی، هـ.، 1401. بررسی کمی و کیفی آبخوان باغملک با استفاده از روش تحلیل‌‌ آماری، روش‌های هیدروشیمیایی وGIS. هیدروژئولوژی، (1)7: 24-11.
میرهاشمی، س.، حقیقت جو، پ.، میرزائی اصلی شیرکوهی، ف.، پناهی، م.، 1396. ارزیابی الگوریتم‌های داده‌کاوی در بررسی و پیش‌بینی وضیعت آبخوان دشت قزوین. هیدروژئولوژی، (2)2: 66-54.
Akhbari, M., Grigg, N.S., 2015. Managing water resources conflicts: Modelling behavior in a decision tool. Water Resources Management, 29(14): 5201-5216.
Berglund, E., 2015. Using agent-based modeling for water resources planning and management. Journal of Water Resource Planning and Management, 141(11): 0401-5025.
Berger, T., Birner, N., McCarthy, J., Daz, H., 2007. Capturing the complexity of water uses and water users within a multi-Agent framework. Water Resources Management, 21(1): 129-148.
Castilla-Rho, J.C., Mariethoz, G., Rojas, R., Andersen, M.S., 2015. An agent-based platform for simulating complex human–aquifer interactions in managed groundwater systems. Environmental Modelling & Software, 73: 305-323.
Chu, J., Wang, C., Chen, J., Wang, H., 2009. Agent-Based Residential Water Use Behavior Simulation and Policy Implications: A Case-Study in Beijing City. Water Resources Management, 23(15): 3267-3295.
Davidsson, P., Holmgren, J., Kyhlbck, H., Mengistu, D., 2007. Applications of Agent Based Simulation. Multi-Agent-Based Simulation VII. L. Antunes and K. Takadama, Springer Berlin Heidelberg, 4442: 15-27.
Feuillette, S., Bousquet, F., Le Goulven, P., 2003. SINUSE: a multi-agent model to negotiate water demand management on a free access water table. Environmental Modelling & Software, 18(5): 413-427.
Filatova, T., Polhill, J., van Ewijk, S., 2016. Regime shifts in coupled socio-environmental systems:Review of modelling challenges and approaches. Environmental Modelling & Software, 75: 333-347.
Giacomoni, M. H., Kanta, L., and Zechman, E. M., 2013. Complex adaptive systems approach to simulate the sustainability of water resources and urbanization. J. Water Resour. Planning and  Management, 10.1061/(ASCE) WR.1943-5452.0000302: 554–564.
Giuliani, M., Castelletti, A., Amigoni, F., Cai, X., 2015. Multiagent systems and distributed constraint reasoning for regulatorymechanism design in water management. Water Res. Plan. Man., 141: 04014068,
Hare, M., and Deadman, P., 2004. Further towards a taxonomy of agent-based simulation models in environmental management. Mathematics and Computers in Simulation, 64(1): 25-40.
Hu, M., Fan, C., Huang, T., Wang, C., Chen, Y., 2018. Urban Metabolic Analysis of a Food-Water-Energy System for Sustainable Resources Management. International Journal of Environmental Research and Public Health, 16(1): 90.
Hyun, J., Huang, S., Yang, Y., Tidwell, V., Macknick, J., 2019. Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions. Hydrology and Earth System Sciences, 23(5): 2261-2278.
Kanta, L., Zechman, E., 2014. Complex Adaptive Systems Framework to Assess Supply-Side and Demand-Side Management for Urban Water Resources. Journal of Water Resources Planning and Management, 140(1): 75-85.
Jaxa-Rozen M., Kwakkel H.J., Bloemendal M., 2019. A coupled simulation architecture for agent-based/geohydrological modelling with NetLogo and MODFLOW. Environmental Modelling & Software,Volume 115: 19-37.
Khan, H.F., Yang, Y.C.E., Xie, H., Ringer, C., 2017. A coupled modeling framework for sustainable watershed management in transboundary river basins. Hydrol. Earth Syst. Sci., 21: 6275–6288.
Levin, S., Xepapadeas, T., Crépin, A.S., Norberg, J., De Zeeuw, A., Folke, C., Hughes, T., Arrow, K., Barrett, S., Daily, G., Ehrlich, P., Kautsky, N., Muler, K.G., Polasky, S., Troell, M., Vincent, J.R., Walker, B., 2013. Social-ecological systems as complex adaptive systems: Modeling and policy implications. Environment and Development Economics, 18(2): 111-132.
Lotfi, S., Araghinejad, S., 2017. A review on challenges in application of agent-based models in water resourcessystems. Iran Water Resources Research, 13(2): 115-126.
Mashhadi Ali, A., Shafiee, M., Berglund, E., 2017. Agent-based modeling to simulate the dynamics of urban water supply: Climate, population growth, and water shortages. Sustainable Cities and Society, 28: 420-434.
Macal, C.M., North, M.J., 2010. Tutorial on agent-based modelling and simulation. J. Simul., 4(3): 151–162.
Moglia, M., Podkalicka, A., McGregor, J., 2018. An Agent-Based Model of Residential Energy Efficiency Adoption. Journal of Artificial Societies and Social Simulation, 21(3): 3.
Moglia, M., Perez, P., Burn, S., 2010. Modelling an urban water system on the edge of chaos. Environmental Modelling & Software, 25(12): 1528–1538.
Moglia, M., Cook, S., McGregor, J., 2017. A review of agent-based modelling of technology diffusion with special reference to residential energy efficiency. Sustainable Cities and Society, 31: 173–182.
Mulligan, K., Brown, C.M., Yang, Y.C.E., Ahlfeld, D., 2014. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling, Water Resour. Res., 50: 2257–2275.
Nouri, A., Saghafian, B., Delavar, M., Bazargan-Lari, M., 2019. Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies. Water Resources Management, 33(11): 3707-3720.
Ostrom, E., 2009. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science, 325(5939): 419-422.
Rai, V., Henry, A.D., 2016. Agent-based modelling of consumer energy choices. Nature Climate Change, 6(6): 556.
Schlüter, M., Pahl-Wostl, C., 2007. Mechanisms of Resilience in Common-pool Resource Management Systems: an Agent-based Model of Water Use in a River Basin. Ecology and Society, 12(2).
Schlüter, M., Leslie, H., Levin, S., Managing water-use tradeoffs in a semi-arid river delta to sustain multiple ecosystem services: a modeling approach, Ecol. Res., 24: 491–503.
Terna, P., 1998. Simulation tools for social scientists: Building agent based models with swarm. J. Artif. Soc.  Simul., 1: 1–12.
Van Oel, P., Mulatu, D., Odongo, V., Willy, D., Van der Veen, A., 2018. Using Data on Social Influence and Collective Action for Parameterizing a Geographically-Explicit Agent-Based Model for the Diffusion of Soil Conservation Efforts. Environmental Modeling and Assessment, 24(1): 1-19.
Van Oel, P.R., Krol, M.S., Hoekstra, A.Y., Taddei, R.R., 2010. Feedback mechanisms between water availability and water use in a semi-arid river basin: A spatially explicit multi-agent simulation approach. Environmental Modelling & Software, 25(4): 433-443.
Voinov, A., Bousquet, F., 2010. Modelling with stakeholders. Environmental Modelling and Software, 25(11): 126.
Yang, Y.C.E., Cai, X., Stipanovich, D.M., 2009. A decentralized optimization algorithm for multi-agent system based watershed management. Water Resource  Researche, 45: W08430.
Yuan, X.C., Wei, Y.M., Pan, S.Y., Jin, J.L., 2014. Urban Household Water Demand in Beijing by 2020: An Agent-Based Model. Water Resource Managment, 28: 2967–2980.
Zechman, E.M., 2011. Agent-Based Modeling to Simulate Contamination Events and Evaluate Threat Management Strategies in Water Distribution Systems. Risk Analysis, 31: 758–772.