بررسی ارتباط هیدرولیکی ساختارهای کارستی با روش‌های هیدروژئوشیمی و ایزوتوپی منابع آب منطقه ایذه شمال استان خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبشناسی، گروه زمین‌شناسی،دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 استاد گروه زمین‌شناسی،دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 استاد گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران.

4 استادیار گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران.

10.22034/hydro.2022.48953.1254

چکیده

مدیریت صحیح منابع آبی وابسته به شناخت عوامل تأثیرگذار بر کیفیت و کمیت منابع آب می‌باشد. در این پژوهش، ارتباط هیدرولیکی بین ساختارهای منطقه کارستی ایذه با استفاده از اطلاعات هیدروژئوشیمیایی و ایزوتوپی منابع آب منطقه ارزیابی شده است. برای بررسی تعداد 31 نمونه آب (17 چاه، 8 چشمه و 6 نمونه باران) در محدوده­های تاقدیس­های کمردراز، منگشت، شاویش-تنوش و ناودیس نعل اسبی در دی­ماه 98 و خرداد 1400 گرفته شد و از نظر هیدروژئوشیمیایی و نیز ایزوتوپ­های δ18O و δ2H مورد بررسی قرار گرفتند. نتایج آنالیز هیدروژئوشیمیایی نمونه­ها نشان داد که میزان غلظت یون­ها تحت­تأثیر انحلال سنگ­های آهکی می­باشد. محتوای ایزوتوپی نمونه­های آب زیرزمینی به­ترتیب از 62/5- تا 49/3- ‰ و از 97/2 - تا 29/12- ‰ برای δ18O وδ2H  می­باشد. بررسی محتوای ایزوتوپی نمونه­های آب چاه­ها و چشمه­های منطقه نشان­دهنده سه گروه منبع آب می­باشد، گروه اول چشمه­های تاقدیس منگشت به‌دلیل تهی­شدگی ایزوتوپی، از ارتفاعات تغذیه می­شوند، جریان سریع آب در سیستم کانالی سبب زمان تأخیر کم در این چشمه­ها گردیده است. گروه دوم غنی‌شده‌تر از گروه اول هستند و علاوه بر بارش، اختلاط آب­های زیرزمینی نیز در تأمین آب آنها مؤثر است. گروه سوم به‌دلیل تبخیر و مسافت طولانی­تر از محل تغذیه تا تخلیه و همچنین سیستم انتشاری غنی­شدگی بیشتر از سایر نمونه­ها دارند. روند کاهشیSr+2 و افزایشی Ba+2 از نمونه­های آب سازندهای آهکی دولومیتی (شاویش-تنوش و منگشت) به سمت نمونه­های آب تاقدیس کمردراز و ناودیس نعل اسبی و همچنین داده­های ساختاری و ایزوتوپی نشان­دهنده احتمال تغذیه آبخوان­های کارستی منطقه از تاقدیس منگشت و همچنین رابطه هیدرولیکی بین این ساختارها می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the hydraulic relationship of karst structures with hydrogeochemical and isotopic methods of water resources in Izeh region, north of Khuzestan province

نویسندگان [English]

  • zahra sajadi 1
  • Nasrollah Kalantari 2
  • Abbas Charchi 3
  • Seyyed Sajedin Mousavi 4
1 Ph.D in Hydrogeology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Iran.
2 Professor of Hydrogeology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Iran.
3 Associated Professor of Tectonics, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Iran.
4 Associated Professor of Engineering geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Iran.
چکیده [English]

Proper water resources management relies on recognizing and evaluating the factors affecting the quantity and quality of the water resources. In the present study, the hydraulic relationship between the karstic structures of the Izeh territory located has been assessed using hydrogeochemical and isotopic information of water resources. To investigate the number of 31 water samples (17 wells, 8 springs and 6 rain samples) in the areas of Kamarderaz, Mongasht, Shavish-Tanosh, Anticlines and the Naal-e-Asbi (Horseshoe) Syncline were taken on June 1398 and June 1400, and hydrogeochemical as well as isotopes δ18O and δ2H were examined until to the hydrogeological and hydraulic behavior of this complex karstic system. The results of hydrogeochemical analysis of the specimens showed that the concentration of ions is influenced by the dissolution of calcareous rocks. The isotopic content of groundwater samples is from 5.62 to 3.49- ‰ and from 20.97 to 12.29- ‰ for δ18O and δ2H. Investigating the isotopic content of water wells and springs of the region indicates three groups of water. The first group of indentation springs is fed from altitudes and snow from altitudes. Fast water in the canal system caused a low latency in these springs. The second group is enriched more than the first group, and in addition to precipitation, the mixing of underground water is also effective in providing their water. The third group has longer than other samples due to evaporation and distances longer than the feeding site and the enrichment system. The decrease in Sr+2 and incremental Ba+2 of dolomitic limestone samples (Shavish-Tanosh and Mongasht) to water samples of chemistry and hinges, as well as structural and isotopic data indicate the probability of nutrition. The karstic aquifers of the region are from the anticline, as well as the hydraulic relationship between these structures.

کلیدواژه‌ها [English]

  • Hydrogeochemistry
  • Hydraulic connection
  • Isotope
  • Izeh
  • Karst
سازمان زمین­شناسی ایران.، 1399. تهیه نقشه پتانسیل آب­های کارستی به‌منظور شناسایی منابع آب زیرزمینی.
جمعدار، م.، سرائی تبریزی، م.، یوسفی، ح.، 1399. پتانسیل­یابی میزان کارستی شدن چشمه­ها از منظر هیدروژئوشیمیایی در محدوده مطالعاتی هشتگر. هیدروژئولوژی، 5(2): 126-113.
علیمرادی، ص.، ناصری، ح. ر.، علیجانی، ف.، کریمی، ح.، 1399. تعیین منشأ و ساز و کارهای تشکیل چشمه­های گوگردی و آبگرم تاقدیس سیاهکوه، جنوب­غرب ایران، با استفاده از خصوصیات هیدروژئوشیمی و ایزوتوپی. هیدروژئولوژی، 5(2): 31-16.
کریمی وردجانی، ح.، 1384. بررسی هیدروژئولوژیکی چشمه­های کارستی موگرمون و سرآسیاب. نهمین همایش انجمن زمین­شناسی ایران، تهران، ایران.
کلانتری، ن.، کشاورزی، م. ر.، چرچی، ع.، 1388. عوامل مؤثر در ظهور چشمه­های حوضه آبریز دشت ایذه. زمین­شناسی کاربردی، 5(2): 147-135.
کلانتری، ن.، محمدی بهزاد، ح. ر.، چرچی، ع.، کشاورزی، م. ر.، 1390. چشمه­های کارستی به عنوان ساده­ترین ابزار برای تعیین خصوصیات هیدروژئولوژیکی آبخوان­های کارستی، مطالعه موردی چشمه بی­بی تلخون، استان خوزستان. زمین­شناسی کاربردی، 1(2): 100-90.
کیایی، م.، جوادی، س.، 1401. ارزیابی آسیب­پذیری و خطرپذیری منابع آب کارستی با تلفیق دو شاخص VESPA و EPIK. هیدروژئولوژی، 7(1): 164-151.
Alemayehu, T., Leis, A., Dietzel, M., 2020. Environmental isotope and hydrochemical characteristics of groundwater in central portion of Mekelle sedimentary outlier, northern Ethiopia. Journal of African Earth Sciences, 171, 103953.
Alimoradi, S., Nassery, H.R., Alijani, F., Karimi, H., 2021. Source determination and formation mechanisms of sulfur and thermal springs of Siah-Kuh anticline, south-west of Iran, using hydrogeochemistry and isotope characteristics. Jonrnal of Hydrogeology, 5(2):16-31.
Alsaaran, N., 2006. Using environmental isotopes for estimating the relative contributions of groundwater recharge mechanisms in an arid Basin, Central Saudi Arabia. Arabian Journal for Science and Engineering, 31, 3-13
Appelo, C.A.J., Postma, D., 2005. Geochemistry, groundwater and pollution. Second ed. 10 Balkema, Rotterdam.
Ashjari, J., Raeisi, E., 2006. Anticline structure influences on regional flow, Zagros, Iran. Journal of Cave and Karst studies, 68(3), 119-127.
Bhat, N.A., Jeelani, G., Bhat, M.Y., 2014. Hydrogeochemical assessment of groundwater in karst environments, Bringi watershed, Kashmir Himalayas, India. Curr. Sci., 106, 1000–1007.
Bourke, S.A., Cook, P.G., Dogramaci, S., Kipfer, R., 2015. Partitioning sources of recharge in environments with groundwater recirculation using carbon-14 and CFC-12. Journal of Hydrology, 525, 418-428.
Bourke, S.A., Shanafield, M., Hedley, P., Dogramaci, Sh., 2020. A hydrological framework for persistent river pools in semi-arid environments. Journal of Hydrology and Earth system scinces,  CRC Press, 672 p.
Chen, W., Liu, Q., Huh, C. A., Dai, M., Miao, Y. C., 2010. Signature of the Mekong River plume in the western SouthmChina Sea revealed by radium isotopes, J. Geophys. Res., 115, C12002.
Chen, W., Peng, J., Hong, H., Shahabi, H., Pradhan, B., Liu, J., Zhu, A. X., Pei, X., Duan, Z., 2018. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci. Total Environ., 626, 1121–1135.
Chihi, H., de Marsily, G., Belayouni, H., Yahyaoui, H., 2015. Relationship between tectonic structures and hydrogeochemical compartmentalization in aquifers: example of the “Jeffara de Medenine” system, south–east Tunisia. Journal of Hydrology 2015. Regional Studies, 4 (Part B): 410-430.
Clark, I.D., Fritz P., 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, NewYork, 328p.
Cloutier, V., Lefebvre, R., Savard, M.M., Bourque, E., Therrien, R., 2006. Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. LawrenceLowlands, Que´bec, Canada. Hydrogeology Journal, 14: 573–590.
Criss, R., Davisson, L., Surbeck, H., Winston, W., 2007. Isotopic methods. Methodsin karst kydrogeology. International contribution to hydrogeology. Taylor and Francis, London, 123-145.
Dindan, K., Bouchaou, Y., Hsissou, Y., Krimissa, M., 2003. Hydrochemical and isotopic characteristics of groundwater in the Souss Upstream Basin, southwestern Morocco. Journal of African Earth Sciences, 36, 315-327.
Edwards, T.W.D., Wolfe, B.B., Gibson, J.J., Hammarlund, D., 2004. Use of water isotope tracers in high-latitude Hydrology and paleohydrology. In: Pienitz, R., Douglas, M.S.V., Smol, J.P. (Eds.), Long-term Environmental Change in Arctic and Antarctic Lakes. Springer, Dordretch, the Netherlands, 187–207 pp.
Eftimi, R., 2006. Hydraulic characteristics of the big capacity water supply wells of Korça City, in Albania: in Proceedings of XVIIIth Carpathian-Balkan Geological Association, Sudar M. Ercegovac M. Grubić A., eds. Belgrade. 118-122. pp.
Fairchild, I.J., Borsato, A., Tooth, A.F., Frisia, S., Hawkesworth, C.J., Huang, Y., McDermott, F., Spiro, B., 2000. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chem. Geol., 166: 255–269.
 Fontes, J.C., 1976. Isotopes du milieu et cycle des eauxnaturelles: quelques aspects. Ph.D. Thesis, University of Paris.
Ford, D.C., Williams, P.W., 2007. Karst Geomorphology and Hydrogeology, Wiley Chichester, 2nd Ed, 576 p.
Gat, J.R., Airey, P.L., 2006. Stable water isotopes in the atmosphere/ biosphere/ lithosphere interface: scaling-up from the local to con- tinental scale, under humid and dry conditions. Global Planet. Change, 51, 25–33.
Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science 17:1088–1090.
Goldscheider, N., Drew, D., 2007. Methods in Karst Hydrogeology, Taylor and Francis, 279 p.
Hamed, Y., Ahmadi, R., Demdoum, A., Bouri, S., Gargouri, I., Ben Dhia, H., Al-Gamal, S., Laouar, R., Choura, A., 2014. Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow. A case study of Gafsa mining basin-Southern Tunisia. Journal of African Earth Sciences, 100, 418-436.
 Hamed, Y., Dhahri, F., 2013. Hydrogeochemical and isotopic composition of groundwater, with emphasis on sources of salinity, in the aquifer system in Northwestern Tunisia. Journal of African Earth Sciences, 83, 10-24.
Helena, B., Prardo, R., Vega, M., Barrado, E., Fernandez, JM., Fernandez, L., 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34:807-816.
Hounslow, A., 1995. Water Quality Data: Analysis and Interpretation, CRC press, 416 p.
Husic, A., Fox, J., Agouridis, C., Currens, J., Ford, W., Taylor, C., 2017. Sediment carbon fate in phreatic karst (Part Conceptual model development. Journal of Hydrology, 549:179–193.
Jebreen, H., Banning, A., Wohnlich, S., Niedermayr, A., 2018. The influence of karst aquifer mMineralogy and geochemistry on groundwater characteristics: West Bank, Palestine. Journal of Water, 10, 1829.
Ju, X., Kou, C., Christie, P., Dou, Z., Zhang, F., 2007. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environment Pollution, 145: 497-506.
Kalantari, N., Rouhi, H., 2018. Discharge hydraulic behavior comparison of two springs in Khu-Safid anticline, Khuzestan, Iran Carbonate and evaporates. 34(4): 2-26.
Karanth, K. R., 2001. Ground Water Assessment Development and Management. Tata McGraw-Hill, 720 p.
Keshavarzi, B., Moore, F., Mosaferi, M., Rahmani, F., 2011. The source of natural arsenic contamination in groundwater, west of Iran. Water Qual Expo Health, 3(1):135–147.
Kohfahl, C., Sprenge, Ch., Benavente Herrera, J., Meyerc, H., Fernandez Chacon, d. F., Pekdeger, A., 2008. Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: A field study in the Granada Basin (Southern Spain). Applied Geochemistry Journal, 23: 846–862.
Krishnaraj, S., Murugesan, V., Vijayaraghavan, K., Sabarathinam, C., Paluchamy, A., Ramachandran, M., 2011. Use of hydrochemistry and stable isotopes as tools for groundwater evolution and contamination investigations. Geosciences, 1(1), 16–25.
Ladouche, B., Luc, A., Nathalie, D., 2009. Chemical and isotopic investigation of rainwater in Southern France (1996–2002): Potential use as input signal for karst functioning investigation. Journal of Hydrology, 367(1–2): 150–164.
Langmuir, D., 1971. The geochemistry of some carbonate ground waters of Central Pennsylvania, Geochem. Cosmocchim. Acta, 35, 1023-1045.
Leketa, K., Abiye, T., 2021. Using environmental tracers to characterize groundwater flow mechanisms in the fractured crystalline and karst aquifers in upper Crocodile River basin, Johannesburg, South Africa, Hydrology, 8(1), 50.
Mahlknecht, J., 2003. Estimation of recharge in the Independence aquifer, central Mexico, by combining geochemicaland groundwater flow models. PhD Thesis, Institute of Applied Geology, University of Agricultural and LifeSciences (BOKU) Vienna, Austria, 296 p.
Mazor, E., 2004. Chemical and Isotopic Groundwater Hydrology. Third Edition, John Wiley, New York, 453 p.
Milanovic, P., 1981. Karst Hydrogeology 2004. W.R.P., Colorado, 434 p.
Moradi, S., Kalantari, N., Charchi, A., 2018. Karstification potential mapping in northeast of Khuzestan province, Iran, using fuzzy logic and analytical hierarchy process (AHP) techniques. Geopersia, 6 (2), 265-282.
Negrel, P., Petelet-Giraud, E., 2005. Strontium isotopes as tracers of groundwater-induced floods: the Somme case study. J Hydrol., 205:99-119.
Paternoster, M., Liotta, M., Favara, R., 2008. Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, southern Italy. Journal of Hydrology 2008. 348, 87–97.
Pearson, K., 1990. On lines and planes of closest fit to systems of points in space. Phil. Mag., (6)2, 559–572.
Pu, T., He, Y., Zhu, G., Zhang, N., Du, J., Wang, C., 2013. Characteristics of water stable isotopes and hydrograph separation in Baishui catchment during the wet season in Mt.Yulong region, south western China. Hydrological Processes, 27: 3641-3648.
Ravikumar, P., Somashekar, R.K., Prakash, K. L., 2015. A comparative study on usage of Durov and Piper diagrams to interpret hydrochemical processes in groundwater from Srlis river basin, Karnataka, India. Elixir Earth Sci., 80, 31073-31077.
Jang, S., Hamm, Y., Yoon, H., Kim, G.B., Park, J. H., Kim, M., 2015. Predicting long-term change of groundwater level with regional climate model in South Korea Geosci. J., 19(3): 503-513.
Setiawan, T., Yoseph, C.S.S.B., Alam, S., Haryono, E., Darmawan, H., 2020. Hydrochemical and environmental isotopes analysis for characterizing a complex karst hydrogeological system of Watuputih area, Rembang, Central Java, Indonesia. Hydrogeology Journal, 28(5): 1635-1659.
Sharp, Z., 2007. Principles of stable isotope geochemistry. Farhikhtegan Alavi Press, 606 p.
Skelton, A., Andren, M., Kristmannsdottir, H., Stockmann, G., Morth, C., Sveinbjornsdottir, A., Kockum, I., 2014. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Journal of Nature Geoscience, 7: 752-756.
Srivastava, S.K., Ramanathan, A.L., 2008. Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53.1509–1528.
White, W.B., 2002. Karst hydrology: recent developments and open questions. Eng. Geol., 65, 85–105.
World Health Organization. 2011. Guidelines for Drinking Water Quality, 3rd ed.; World Health Organization (WHO): Geneva, Switzerland.
Xiao, Sh., Zeng, Ch., Lan, J., Di, Y., He, Y., Xiao, H., Wang, J., 2021. Hydrochemical characteristics and controlling factors of typical dolomite karst basin in humid subtropical zone. Hindawi Geofluids 2021, Article ID 8816097, 14 p.
Yuan, H., Yuan, W., Bao, Z., Chen, K., Liu S., 2017. Development of two new copper isotope standard solutions and their copper isotopic compositions. Geostand. Geoanal. Res. 41, 77–84.
Yuan, J., Xu, F., Deng, G., Tank, Y., Li, P., 2017. Hydrogeochemistry of shallow groundwater in a karst aquifer system of Bijie City, Guizhou Province. Water, 9, 625.
Zaidi, F. K., Nazzal, Y., Ahmed, I., Al-Bassam, A. M., Al-Arifi, N.S., Ghrefat, H., Al-Shaltoni, S. A., 2015. Hydrochemical processes governing groundwater quality of sedimentary aquifers in Central Saudi Arabia and its environmental im-plications. Environmental Earth Sciences, 74(2): 1555–1568.
Zhang, B., Zhao, D., Zhou, P., Qu, S., Liao, F., Wang, G., 2020. Hydrochemical characteristics of groundwater and dominant water–rock interactions in the Delingha Area, Qaidam Basin, Northwest China. Water, 12, 836.