توسعه شهرک‌های گلخانه‌ای و تاثیر آن بر تراز آب زیرزمینی آبخوان‌های حوضه آبریز آجی‌چای با استفاده از مدل SWAT

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

2 استاد گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

3 دانشیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

10.22034/hydro.2023.13880

چکیده

کشت محصولات کشاورزی در محیط گلخانه به علت ایجاد شرایط مناسب رشد گیاه در طول سال، افزایش چند برابری تولید و کاهش آب مصرفی یکی از راه­کارهای اصلی استفاده بهینه از منابع آب می­باشد. در این تحقیق دو سناریو با توجه به سیاست­های فعلی توسعه شهرک­های گلخانه­ای در کشور ایران و یک سناریو ایده­آل (سناریو سوم) جهت توسعه شهرک­های گلخانه­ای تنظیم گردیده است. جهت ارزیابی اثرات اجرای سناریوهای توسعه شهرک­های گلخانه­ای از مدل ابزار ارزیابی آب و خاک­(SWAT) استفاده گردید. شاخص­های آماری حاکی از دقت بسیار بالای شبیه­سازی ایستگاه­های آب­سنجی مورد مطالعه می­باشد، بطورریکه در ایستگاه آب­سنجی آخولا (خروجی حوضه) آماره­های همبستگی، نش-ساتکلیف و مجذور میانگین مربعات خطا در دوره واسنجی به ترتیب برابر با 92/0، 83/0 و 48/6 مترمکعب بر ثانیه و در دوره صحت­سنجی به ترتیب برابر با 86/0، 73/0 و 23/3 مترمکعب بر ثانیه بوده است. توسعه شهرک­های گلخانه­ای با مساحت 1875 هکتار در حوضه آجی­چای به ازای سناریو اول و دوم به ترتیب موجب افت متوسط 68/11 و 41/4 متری تراز آب زیرزمینی آبخوان­های حوضه آجی­چای نسبت به شرایط اولیه گردیده است. شبیه­سازی سناریو سوم باعث افزایش تراز آب زیرزمینی آبخوان­های تبریز، آذرشهر، دامنه شمالی سهند، بستان­آباد، دوزدوزان، مهربان، بیلوردی، اسب فروشان و سراب به­ترتیب برابر با 12/4، 73/2، 45/1، 88/8، 93/10، 90/2، 79/4، 99/2 و 31/3 متر و جبران حجم زیادی از بیلان منفی آن­ها شده است. نتایج نشان دادند که توسعه شهرک­های گلخانه­ای با استفاده از منابع آبی جدید می­تواند باعث افزایش تولید محصولات کشاورزی و همچنین تشدید روند کاهشی تراز آب زیرزمینی گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the Development of Greenhouse Estates and Its Impact on Groundwater Levels of Ajichay Basin Aquifers Using SWAT Model

نویسندگان [English]

  • Mohammad Isazadeh 1
  • Ahmad Fakheri Fard 2
  • sabereh darbandi 3
1 Ph.D. Candidate, Department of Water Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
2 Professor, Department of Water Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
3 Associate Professor, Department of Water Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
چکیده [English]

Greenhouse crops production is one of the major strategies for managing optimum use of water resources due to creating desirable conditions for plant growth over the year, multiplying production and reducing water usage. In the present study, two scenarios were adopted according to the current policies for the development of greenhouse towns in Iran and an ideal scenario (third scenario) was also considered for the development of greenhouse towns. The soil and water assessment tool (SWAT) model was used to evaluate the impacts of the implementation of development scenarios of greenhouse towns. Statistical indicators showed very high accuracy in simulating hydrometric stations of study area, as for Akhola hydrometric station (basin outlet), the statistics of correlation factor, Nash-Sutcliffe efficiency (NSE), and root mean squared error (RMSE) in the calibration period were 0.77, 0.62, and 6.21 m3 s-1, respectively, and in the validation period were 0.83, 0.66, and 3.09 m3 s-1, respectively. The development of greenhouse towns with an area of ​​1875 ha in Ajichay basin for the first and second scenarios resulted in an average drop of 11.68 m and 4.41 m in the groundwater level of the aquifers in Ajichay basin compared to the initial conditions. Simulation of the third scenario increases the groundwater level of aquifers of Tabriz, Azarshahr, Damaneh Shomali Sahand, Bostanabad, Duzduzan, Mehraban, Bilverdi, Asbforoshan and Sarab by 4.12, 2.73, 1.45, 8.88, 10.93, 2.90, 4.79, 2.99, and 3.31 m, respectively, and also has compensated a large amount of their negative balance. The results revealed that the development of greenhouse towns using new water resources can increase agricultural crop production and also intensify the downward trend in groundwater levels.

کلیدواژه‌ها [English]

  • Ajichay basin
  • Greenhouse town
  • Groundwater
  • SWAT model
حیدرزاده، م.، سالاری، ا.، 1400. ارزیابی تأثیر خشکسالی­های اخیر بر تغییرات سطح منابع آبهای زیرزمینی (مطالعه موردی: دشتهای شهرستان بندرعباس). هیدروژئولوژی، 6(1): 152-140.
شمشکی، ا.، کرمی، غ.ح.، 1398. تغییرات زمانی و مکانی جریان آب زیرزمینی در ساحل جنوب شرقی دریاچه ارومیه. هیدروژئولوژی، 4(1): 41-26.
محمدپور، م.، زینال­زاده، ک.، رضاوردی­نژاد، و.، حصاری، ب.، 1399. بررسی نوسانات آب زیرزمینی تحت تاثیر تغییر اقلیم و بهبود روش آبیاری (مطالعه موردی: دشت اهر). هیدروژئولوژی، 5(2): 112-99.
Abbaspour, K.C., 2008. SWAT Calibration and Uncertainty Programs. Department of Systems Analysis, Integrated Assessment and Modeling (SIAM). Eawag, SwissFederal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
Ahmadzadeh, H., Morid, S., Delavar, M., Srinivasan, R., 2016. Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment. Agricultural Water Management, 175: 15-28.
Andaryani, S., Trolle, D., Nikjoo, M.R., Moghadam, M.R., Mokhtari, D., 2019. Forecasting near-future impacts of land use and climate change on the Zilbier river hydrological regime, northwestern Iran. Environmental Earth Sciences, 78(6): 1-4.
Andriolo, J.L., 1999. Fisiologia das culturas protegidas. Editora UFSM.
Anonymous., 1995. The digital soil map of the world and derived soil properties. CD-ROM, Version 3.5, FAO, Rome.
Anonymous., 2014. Lake Urmia and its Basin: Characteristics, Current Situation, Drivers of Change, Management/Institutional Actions Undertaken and Planned, International Technical Round Table toward a Solution for Iran's Drying Wetlands, 16–18, CIWP, Tehran, Iran.
Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., Haney, E.B., Neitsch, S.L., 2012. Input/Output Documentation Version 2012. Soil and Water Assessment Tool.
Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34(1): 73-89.
Arthington, A.H., Bhaduri, A., Bunn, S.E., Jackson, S.E., Tharme, R.E., Tickner, D., Young, B., Acreman, M., Baker, N., Capon, S., Horne, A.C., 2018. The Brisbane declaration and global action agenda on environmental flows. Frontiers in Environmental Science, 6: 45.
Bucak, T., Trolle, D., Andersen, H.E., Thodsen, H., Erdoğan, Ş., Levi, E.E., Filiz, N., Jeppesen, E., Beklioğlu, M., 2017. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Science of the Total Environment, 581: 413-425.
Chen, Y., Xu, Y., Yin, Y., 2009. Impacts of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China. Quaternary International, 208(1-2): 121-128.
Dehghanipour, A.H., Schoups, G., Zahabiyoun, B., Babazadeh, H., 2020. Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran. Agricultural Water Management, 241: 106353.
Farrokhzadeh, S., Hashemi Monfared, S.A., Azizyan, G., Sardar Shahraki, A., Ertsen, M.W., Abraham, E., 2020. Sustainable water resources management in an arid area using a coupled optimization-simulation modeling, Water, 12(3): 885.
Fathian, F., Dehghan, Z., Eslamian, S., 2016. Evaluating the impact of changes in land cover and climate variability on streamflow trends (case study: eastern subbasins of Lake Urmia, Iran). International Journal of Hydrology Science and Technology, 6(1): 1-26.
Fernandes, C., Corá, J.E., Araújo, J.A., 2003. Reference evapotranspiration estimation inside greenhouses. Scientia Agricola, 60: 591-594.
Gebremicael, T.G., Mohamed, Y.A., Betrie, G.D., Van Der Zaag, P., Teferi, E., 2013. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. Journal of Hydrology, 482: 57-68.
Hari Krishna, B., Mani, A., Uma Devi, M., Ramulu, V., 2014. Simulation of impact of change in landuse on water yield of upper Manair catchment. International Journal of Innovative Research and Development, 3(1): 592-600.
Hassanzadeh, E., Zarghami, M., Hassanzadeh, Y., 2012. Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resources Management, 26(1): 129-145.
Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., Lucht, W., 2015. Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrology and Earth System Sciences, 19(7): 3073-3091.
Kulkarni, S., 2011. Innovative technologies for water saving in irrigated agriculture. International Journal of Water Resources and Arid Environments, 1(3): 226-231.
Laurance, W.F., 2007. Forests and floods. Nature, 449: 409-410.
Lin, B., Chen, X., Yao, H., Chen, Y., Liu, M., Gao, L., James, A., 2015. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecological Indicators, 58: 55-63.
Mahmudi, P., Motamedvaziri, B., Hosseini, M., Ahmadi, H., Amini, A., 2021. Hydrological modeling of climate change impacts on discharge fluctuatuations in the Siminehroud and Zarrinehroud Watersheds. Journal of Watershed Engineering and Management, 13(1): 138-149.
Mancosu, N., Snyder, R.L., Kyriakakis, G., Spano, D., 2015. Water scarcity and future challenges for food production. Water, 7(3): 975-992.
Molina-Navarro, E., Trolle, D., Martínez-Pérez, S., Sastre-Merlín, A., Jeppesen, E., 2014. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. Journal of Hydrology, 509: 354-366.
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3): 885-900.
Mpusia, P.T., 2006. Comparison of water consumption between greenhouse and outdoor cultivation. Enschede: ITC.
Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2011. Soil and Water Assessment Tool—Version 2009-User’s Manual. Springer, Temple.
Panahi, D.M., Kalantari, Z., Ghajarnia, N., Seifollahi-Aghmiuni, S., Destouni, G., 2020. Variability and change in the hydro-climate and water resources of Iran over a recent 30-year period. Scientific Reports, 10(1): 1-9.
Perry, C., Steduto, P., Karajeh, F., 2017. Does improved irrigation technology save water? A review of the evidence. Food and Agriculture Organization of the United Nations, Cairo 42.
Pritchard, H.D., 2017. Asia’s glaciers are a regionally important buffer against drought. Nature, 545: 169-174.
Raeisi, L.G., Morid, S., Delavar, M., Srinivasan, R., 2019. Effect and side-effect assessment of different agricultural water saving measures in an integrated framework. Agricultural Water Management, 223: 105685.
Rath, T.H., 1994. Einfluss derWӓrmespeicherung auf die Berechnung des Heizenergiebedarfes von Gewӓchshӓusern mit Hilfe des k0-Modelles. Gartenbauwissenschaft, 59: 39–44.
Rezaei Zaman, M.R., Morid, S., Delavar, M., 2016. Evaluating climate adaptation strategies on agricultural production in the Siminehrud catchment and inflow into Lake Urmia, Iran using SWAT within an OECD framework. Agricultural Systems, 147: 98-110.
Ruisen, Z., Xinguang, D., Yingjie, M., 2009. Sustainable water saving: new concept of modern agricultural water saving, starting from development of Xinjiang's agricultural irrigation over the last 50 years. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 58(4): 383-392.
Schulz, S., Darehshouri, S., Hassanzadeh, E., Tajrishy, M., Schüth, C., 2020. Climate change or irrigated agriculture–what drives the water level decline of Lake Urmia. Scientific Reports, 10(1): 1-10.
Scott, C.A., Vicuña, S., Blanco-Gutiérrez, I., Meza, F., Varela-Ortega, C., 2014. Irrigation efficiency and water-policy implications for river basin resilience. Hydrology and Earth System Sciences, 18(4): 1339-1348.
Seckler, D., 1999. Revisiting the\IWMI paradigm:\Increasing the efficiency and productivity of water use (No. H024042). International Water Management Institute.
Shadkam, S., Ludwig, F., van Vliet, M.T., Pastor, A., Kabat, P., 2016. Preserving the world second largest hypersaline lake under future irrigation and climate change. Science of the Total Environment, 559: 317-325.
Singh, A., 2014. Simulation–optimization modeling for conjunctive water use management. Agricultural Water Management, 141: 23-29.
Wang, J., Song, C., Reager, J.T., Yao, F., Famiglietti, J.S., Sheng, Y., MacDonald, G.M., Brun, F., Schmied, H.M., Marston, R.A., Wada, Y., 2018. Recent global decline in endorheic basin water storages. Nature Geoscience, 11(12): 926-932.
Williams, J.R., 1995. The EPIC model. Computer Models of Watershed Hydrology: 909-1000.
Xue, J., Gui, D., Lei, J., Sun, H., Zeng, F., Feng, X., 2017. A hybrid Bayesian network approach for trade-offs between environmental flows and agricultural water using dynamic discretization. Advances in Water Resources, 110: 445-458.
Yapiyev, V., Sagintayev, Z., Inglezakis, V.J., Samarkhanov, K., Verhoef, A., 2017. Essentials of endorheic basins and lakes: A review in the context of current and future water resource management and mitigation activities in Central Asia. Water, 9(10): 798.
Zarghami, M., 2011. Effective watershed management; case study of Urmia Lake, Iran. Lake and Reservoir Management, 27(1): 87-94.