شناسایی زون‌های تراوا در محدوده معدن مس دره‌زار سیرجان با استفاده از تحلیل سری زمانی بارش و سطح آب زیرزمینی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب شناسی دانشگاه صنعتی شاهرود

2 عضو هییت علمی دانشکده علوم زمین دانشگاه صنعتی شاهرود

3 عضو هیأت علمی گروه زمین شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان

چکیده

معدن مس دره‌زار در فاصله‌ی 50 کیلومتری شمال‌غرب شهر سیرجان در استان کرمان قرار دارد. در این تحقیق تحلیل سری زمانی بارش و سطح ایستابی در چاههای مشاهده‌ای انجام شده است. به دلیل عدم پمپاژ آب زیرزمینی در معدن، تغییرات سطح ایستابی تنها تحث تاثیر نوسانات بارش و رودخانه دایمی منطقه است. در سری‌های زمانی سطح ایستابی محدوده‌ی معدن طی دوره زمانی 97-1394 روندهای خطی نزولی یا کاهشی دیده می‌شوند. همچنین مؤلفه‌ی فصلی با دوره تناوب 12 ماهه در سری‌های زمانی بارش و سطح ایستابی مشاهده می‌شود که ناشی از تغییرات سالیانه شرایط اقلیمی است. تأخیر زمانی بین اثر بارش بر سطح ایستابی عمدتاً بین 1 تا 2 ماه متغیر می‌باشد و این تأخیر زمانی در محدوده‌ی جنوب شرقی پیت تا یک سال افزایش یافته است و احتمالاً زونی با تراوایی کم در این قسمت وجود دارد. تاخیر زمانی پاسخ سطح ایستابی در چاه‌های مشاهده‌ای نسبت به تغییرات مکانی بار هیدرولیکی در مقابل طول فاصله مکانی بین چاه‌ها نشان می‌دهد همبستگی قوی بین آنها وجود ندارد. در واقع پاسخ سطح ایستابی به تغییرات بار هیدرولیکی در آبخوان سنگی منطقه، چندان وابسته به طول فاصله بین چاه‌های مشاهده‌ای نیست و احتمالا ارتباط هیدرولیکی از طریق زون‌های با تراوایی بالا انجام می‌شود. همچنین تعداد تأخیرهای زمانی کمتر از 1 ماه در هر چاه، در مقابل متوسط تأخیر زمانی نشان می‌دهد در شمال و جنوب پیت، کمترین تأخیر زمانی در پاسخ به تغییرات سطح ایستابی و بیشترین تعداد تأخیر زمانی کمتر از 30 روز مشاهده می‌شود. بنابراین زون‌های با تراوایی بالا احتمالا در قسمت شمال و جنوب پیت قرار دارند و مکان‌های مناسب جهت حفر چاه های زهکشی تشخیص داده شد. درنهایت بر مبنای مدل سه بعدی لیتولوژی، زون تراوای حاصل از هوازدگی در ارتفاع 2500 تا 2600 متر بالاتر از سطح دریا، منطبق با ارتفاع سطوح تراوش، در منطقه گسترش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying the permeable zones in Dare-h-Zar copper mining area in Sirjan using time series analysis of the precipitation and groundwater level

نویسندگان [English]

  • Sepideh Mali 1
  • Hadi Jafari 2
  • Reza Jahanshahi 3
1 Shahrood University of Technology
2 Shahrood University of Technology
3 University of Sistan and Baluchestan
چکیده [English]

Identifying the permeable zones in Dare-h-Zar copper mining area in Sirjan using time series analysis of the precipitation and groundwater level
Introduction
The Dareh-zar copper mining area is located approximately 50 km northwest of Sirjan and 10 km south of Sarcheshmeh copper mine in Kerman province. The general direction of the groundwater flow is approximately from north to the south. Without groundwater pumping in the mining area, temporal variations of the groundwater levels were dependent only on the rainfall and the river’s discharge fluctuations.
Matherials and Methods
In this research, the time series analysis of the precipitation and the water table has been performed to determine their relationship. In order to prepare the water table and precipitation data, the components of the trends were identified and then deleted for the calculation of time series in the frequency domain. Also, for preliminary study of the location of permeable zones in the hard rock layers, the three-dimensional graphical model of permeable zone has been drawn based on the geo-statistical method using ROCKWORK software.
Discussion of Results
In the time series of the groundwater levels, a dominant decreasing linear trends were recognized during the period of 2014-2017. After de-trending the time series of rainfall and water table, using autocorrelation functions, a seasonal trend with a period of 12 months was recognized in the data, which was due to the annual changes in climatic conditions. According to the time series analysis, the time lags between the precipitation and the groundwater levels vary between 1 and 2 months. The time lags have been increased to one year in the southeastern of the mining pit. It is probbaly resulted from a zone with very low permeability. The lag time of impact response functions (IRF) for water table in the observation wells (in related to the spatial variations of hydraulic head) were plotted versus the direct distance between the wells. In general, the lag time is expected to be increased with increasing spatial spacing between wells, while in the study area there was no strong relationship between the lag time and the direct distance. In fact, the IRF of the water table to variations of the hydraulic head in the hard rock aquifer of study area (unlike to alluvial aquifers) was not dependent on the distance between the observation wells. So hydraulic connectivity was probably through high-permeability zones in the study area.  The north and south area of the pit show the lowest lag time with the maximum number of lag times less than 1 month. Therefore, high-permeability zones were probably located in the north and south of the pit. It was confirmed by three-dimensional model (fence diagram) of lithology showing the locations of the seepage faces and permeable zones in the area.
Conclusions
The northern and southern parts of the pit are suitable places for drilling wells for dewatering plan of the mining area. Finally, three-dimensional model and fence diagram of the lithology showed that a permeable zone has been extended in elevation 2500 to 2600 m above sea level. The locations exactly correspond to the seepage faces level in the mine pit.
Keywords: Groundwater, Time series analysis, lag time, water table

کلیدواژه‌ها [English]

  • Groundwater
  • Time series analysis
  • lag time
  • water table
سیاوش حقیقی، م.، زارع، م.، مکنونی گیلانی، س.، کریمی نسب، س.، آزاریخواه، ا.، کرمی، غ.، انصاری، ع (1385) کاربرد هیدروژئوشیمی نمونه­های آب معدن سنگ‌آهن گل گهر در بررسی مناطق ایجادکننده بار آبی مزاحم، دهمین همایش انجمن زمین­شناسی ایران، دانشگاه تربیت مدرس
ناصری، ح.، علیجانی، ف.، محرابی نژاد، ع (1393) هیدروژئوشیمی آب­های زیرزمینی در معدن زغال‌سنگ زیرآب، مجله زمین-شناسی کاربردی پیشرفته، شماره 11، دانشگاه شهید چمران اهواز
نخعی سرودانی، ب.، جهانشاهی، ر.، عصاری، الف.، (1397) شبیه سازی زمین آماری شاخص کیفیت مغزة حفاری، با بررسی پیوستگی مکانی در لایه متراکم آبرفت کواترنری و سازند سخت معدن گهرزمین، جهت تعیین زون‌های تراوا. فصلنامه کواترنری ایران، دوره 4، شماره 2، ص 177-189.
عصاری، الف. و محمدی، ض (1392) شبیه سازی ضریب آبگذری با استفاده از روشهای زمین آماری با هدف تعیین محل چاه‌های پمپاژ (مطالعة موردی: معدن گلگهر). اولین کنارانس ملی مهندسی اکتشاف منابع زیرزمینی، شاهرود.
جهانشاهی، ر.، مالی، س.، (1397) گزارش طرح مطالعات مقدماتی زهکشی معدن مس دره‌زار، دانشگاه سیستان و بلوچستان.
صفوی، ح.، (1388) هیدرولوژی مهندسی، ارکان دانش، اصفهان.
Ahmadi, S., Jahanshahi, R., Moeini, V., Mali, S. 2018. Assessment of hydrochemistry and heavy metals pollution in the groundwater of Ardestan mineral exploration area, Iran. Environmental Earth Sciences, 77, 212
Assari A.,  Mohammadi Z. 2017. Combined Use of Geostatistics and Multi-Criteria Decision Analysis to Determine New Pumping Well Locations in the Gol-Gohar Open Pit Mine, Iran. Mine Water and the Environment, 36, 283–298
Chatfield, C. 1982. The analysis of time series: Theory and practice, London. New York: Chapman and Hall
Chow, G.C. 1987. Comments on a Time Series Analysis of Seasonality in Econometric Models' by Charles Plosser, in A. Zellner (ed.), Seasonal Analysis of Economic Time Series) U.S. Department of Commerce, Bureau of the Census, Economic Research Report ER-1, 398-401
Dimitrijevic, M.D., Dimitrijevic, M.N., Djordjevic, M., Vulovic, D. 1956. Pariz Geology Map (Scale 1:100000). Ministry of Economy Geological Survey of Iran.
Ding S., Jiang H., Wang L., Liu G., Li N., Liang B. 2015. Identification and Characterization of High-permeability Zones in Water Flooding Reservoirs with an Ensemble of Methodologies. SPE-176158-MS. Society of Petroleum Engineers
Huang W.P., Li C. Zhang L.W., Yuan Q., Zheng Y.S., Liu Y. 2018. In situ identification of water-permeable fractured zone in overlying composite strata. International Journal of Rock Mechanics and Mining Sciences, 105, 85-97
Huang, X., Wang, G. X., Cui, L., Ma, L. 2018. Hydrochemical and stable isotope (δD and δ18O) characteristics of groundwater and hydrogeochemical processes in the Ningtiaota Coalfield, Northwest China. Mine Water and the Environmen, 37(1), 119–136
Norouzi, H., Asghari Moghaddam, A. 2020.  Groundwater quality assessment using random forest method based on groundwater quality indices (case study: Miandoab plain aquifer, NW of Iran). Arabian Journal of Geosciences. 13:912.
Jahanshahi, R., Zare, M. 2017. Delineating the origin of groundwater in the Golgohar mine area of Iran using stable isotopes of 2H and 18O and hydrochemistry. Mine Water Environ., 36, 550–563
Lee, J.Y., Lee, K.K. 2000. Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system". Journal of Hydrology, 229(3–4), 190-201
Sahraei Parizi H., Samani N. 2014. Environmental Isotope Investigation of Groundwater in the Sarcheshmeh Copper Mine Area, Iran. Mine Water Environ., 33, 97–109
Sahu P., López D. L. Stoertz M. W. 2009. Using Time Series Analysis of Coal Mine Hydrographs to Estimate Mine Storage, Retention Time, and Mine-pool Interconnection. Mine Water and the Environment, 28, 194–205
Sun, J., Tang, C., Wu, P., Strosnider, W.H.J. 2014. Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage: Impacts at a SW China coalfield. Science of the Total Environment, 487(1), 15
Troyanov A. K., Martyshko P. S., Yurkov A. K., Dyakonov B. P., Astrakhantsev Yu. G., Nachapkin N. I., Kozlova I. A., E. Bazhenova A., Vdovin A. G. 2012. Identification of Permeable Zones Based on the Borehole Observations of Seismoacoustic Emissions and Helium Concentrations. Doklady Earth Sciences, 445, Part 1, 893–896.
Yang, G.Y., Huang, F.C. 2007. Water source determination of mine inflow based on nonlinear method. J Chin Univ Min Technol, 36(3), 283–6
Zhang, X.L., Zhang, Z.X., Peng, S.P. 2003. Application of the second theory of quantification in identifying gushing water sources of coal mines. J Chin Univ Min Technol, 32(3), 251–5
Zhu, Q.H., Feng, M.M., Mao, X.B. 2008. Numerical analysis of water inrush from workingface floor during mining. J Chin Univ Min Technol, 18(2), 159–63