Groundwater Level Prediction of Ajabshir Plain using Fuzzy Logic, Neural Network Models and Time Series

Document Type : Research paper

Authors

1 Research Assistant Professor Construction & Mining Faculty Research Standard Institute

2 Master of Water Resources Engineering

Abstract

Groundwater system studies to understanding its behavior, requires the exploratory drilling wells, pumping test and geophysical experiments, which can carried out with most cost. For this reason, simulation of groundwater flows by mathematical and computer models, which is an indirect method to groundwater studies, is being spent a few costs. In this research, the efficiency of artificial neural network, fuzzy logic and time series models has been investigated in groundwater level estimation of Ajabshir plain. Parameters of precipitation, temperature, flow rate and water level within time period of the previous month were used as input and the water table in each period were selected as output through monthly scale (2007-2018). To evaluating the performance of models, Correlation coefficient, root mean square error and coefficient of mean absolute error were used. The results showed that the Fuzzy Logic model are able to estimate water levels with acceptable accuracy. Gaussian functions was a membership functions of fuzzy model in groundwater level prediction, which fitted to the classified data and the output membership function of the sageno model is a function which is based on the inputs. In terms of accuracy, fuzzy logic model with the highest correlation coefficient (0.96), lowest root mean square error (0.068 m) and mean absolute error (0.056 m) was recognized as a best the model in the groundwater level prediction.

Keywords


عزیزی، ق. 1384. بررسی خشک‌سالی‌ها، ترسالی‌ها و امکان پیش‌بینی آن‌ها با استفاده از مدل سری زمانی در استان هرمزگان. فصلنامه تحقیقات جغرافیایی. شماره 63 – 4.
نکوآمال کرمانی، م.، میرعباسی نجف آبادی، ر.، 1395. ارزیابی روش های درون یابی در تخمین سطح آب زمینی (مطالعه موردی: دشت سرخون)، مجله هیدروژئولوژی، دوره 2، 1396، 95-84.
نیرومند، ح.، بزرگ‌نیا، ا. 1372. مقدمه‌ای بر سری‌های زمانی(ترجمه). انتشارات دانشگاه فردوسی مشهد.  289ص.
میان‌آبادی، ح.،   افشار، ع. 1378. کاربرد سری‌های زمانی ماهانه پریودیک در تولید رواناب ماهانه و مدیریت یکپارچه منابع آب حوضه کشف رود. سومین کنفرانس مدیریت منابع آب ایران، تبریز، ایران.
Abarashi, F., Moftah Heghi, M., Sani Khani, H., Dehghani, A.A. 2014. Comparison of performance of three intelligent methods in order to predict static level fluctuations (Case study: Zerling plain). Water and Soil Conservation Studies. 21(1): 163-180.Adamowski, J., Chan, H., 2011. A wavelet neural network conjunction model for groundwater level forecasting. Water Resources Management journal. 407(1-4): 28-40.
Chitsazan, M., Rahmani, G., Neyamadpour, A., 2013. Groundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south-west Iran. Journal of Geope. 3(1): 35-46.
Moosavi, V., Vafakhah, M., Shirmohammadi, B., Behnia, N., 2013. A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods. Water Resources Management journal. 27(5): 1301-1321.
Pourmohammadi, S., Malekinejad, H., Pourshriyati, R. 2013. Comparison of the Efficiency of Neural Network Techniques and Time Series in Groundwater Forecasting (Case Study: Bakhtegan Basin of Fars Province). Water and Soil Conservation. 20(4): 251-262.
Khasheiy Siyuki, A., Ghahreman, B., Koochakzade, M. 2012. Comparison of Artificial Neural Network Models, ANFIS and Regression in Estimating the Staging Level of the Aquifer in Neishabour Plain. Irrigation and drainage of Iran. =7: 10-22.
Nadiri, A., Asgharimghdam, A., Abghari, H., Fijani, A. 2012. Development of composite artificial intelligence models in the estimation of aquifer transferability, Case study: Tasuj plain. Iranian Water Resources Research. 9: 1-14.
ASCE. 2000. Task Committee on Application of Artificial Neural Networks in Hydrology, Part I and II. Journal of Hydrology. 5(2): 115-137.
Daliakopoulos, I.N., Coulibaly, P., Tsanis, I.K. 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology. 309(4): 229-240.
Demuth, H., Beale, M. 2000. Neural Network Toolbox User, s Guide,By the Math Works. Inc Version. 4: 840pp.
Dixon, B.A. 2010. Case study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N. Journal of Hydrogeology. 17(6): 1507–20.
Feng, S., Kang, S., Huo, Z., Chen, S., Mao, X. 2008. Neural networks to simulate regional groundwater levels affected by human activities. Groundwater. 46(1): 80-90.
Hopfield, J.J. 1982. Neural network and physical systems with emergent collective computational abilities. Proc. Nat, Academy of scientists. 79: 2554-2558.
Nadiri, A., Chitsazan, N., Tsai, F.T.-C., Asghari Moghaddam, A. 2014. Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. Journal of Hydrologic Engineering. 19(3): 520-532.
Norouzi, H., Asghari Mogaddam, A. and Nadiri, A.A. 2016. Determining vulnerable areas of Malikan Plain Aquifer for Nitrate, Using Random Forest method. Journal of Environmental Studies. 41(4): 923-94.
Norouzi, H., Nadiri, A.A., Moghaddam, A.A., Gharekhani, M. 2018. Comparing Performans of Fuzzy Logic, Artificial Neural Network and Random Forest Models in Transmissivity Estimation of Malekan Plain Aquifer, Journal of ecohydrology. 5(3): 739-751. doi.org/10.22059/ije.2018.239914.707
Philip Plumb, A., Rowe, R.C., York, P., Brown, M. 2005. Optimisation of the predictive ability of artificial neural network (ANN) models: A comparison of three ANN programs and four classes of training algorithm. European Journal of Pharmaceutical Sciences. 25(5): 395–405.
Rani Sethi, R., Kumar, A., Sharma, S.P., Verma, H.C. 2010. Prediction of water table depth in a hard rock basin by using artificial neural network. International Journal of Water Resources and Environmental Engineering. 2(4): 95-102.
Tayfur, G., Nadiri, A., Asghari Moghaddam, A. 2014. Supervised intelligent committee machine method for hydraulic conductivity estimation. Water Resources Management. 28: 1173–1184.
Capilla, C. 2008. Time series analysis and identification of trends in a Mediterraneanurban area, Global and Planetary Change. 63: 275–281.