Prediction of groundwater quality in Khanmirza plain using decision tree method

Document Type : Research paper

Authors

1 MSc student of Water Resources Engineering. Shahrekord University.

2 Assistant Professor, Department of Water Engineering, Shahrekord University

Abstract

      Groundwater is an important resource for agricultural, industrial and drinking uses in arid and semi-arid regions. Therefore, study and management of these valuable resources is necessary. Since the monitoring and investigation of groundwater quality is a time consuming and costly process, so finding a method which enables us to forecast groundwater quality with the least number of parameters lead to save money and time. The aim of this study is prediction of groundwater quality class, based on the USSL diagram in the Khanmirza plain by decision tree method. The chemical parameters and monthly and cumulative precipitation were used as model inputs. For this purpose, the water quality data of 19 wells which located in the Khanmirza plain, were used for the period 1991-2011. The results showed that decision tree method is able to classify water quality with high accuracy, based on only 4 chemical parameters (i.e. EC, Na, SAR and Cation). In the other words, in order to classify the groundwater quality of Khanmirza plain in the future, measuring these four parameters is enough, which significantly reduces the cost and time of analysis.

Keywords


ثاقبیان، م. ستاری، م. ت. و میرعباسی نجف‌آبادی، ر.1392. طبقه­بندی کیفیت آب زیرزمینی آبخوان دشت اردبیل با استفاده از روش تصمیم­گیری درختی، گزارش طرح تحقیقاتی، دانشگاه آزاد اسلامی واحد اهر.
ظهیری، ع. و قربانی، خ. 1392. شبیه­سازی دبی جریان در مقاطع مرکب به کمک مدل درخت تصمیمM5 1 . نشریه پژوهش‌های حفاظت آب و خاک، 20(3): 113-132.
محجوبی، ع. و تجریشی، م. 1389. مقایسه عملکرد الگوریتم‌های شبکه عصبی مصنوعی و درختان تصمیم‌گیری در پیش‌بینی تغییرات شوری آب رودخانه‌ها (مطالعه موردی: رودخانه کارونچهارمین همایش تخصصی مهندسی محیط زیست، 10-11 آبان، دانشکده محیط‌زیست دانشگاه تهران، تهران.
Akyildz, I.F. Su, W. Sankarasubramaniam, Y. Cayirci, E. 2002. Wireless sensor networks: a survey, Computer Networks, 38: 393-422.
Eisenberg, J.N.S. and Mc Kone, T.E. 1998. Decision tree method for the classification of chemical pollutants: incorporation of across-chemical variability and within-chemical uncertainty, Environmental Science and Technology, 32: 3396-3404.
Litaor, M.I. Brielmann, H. Reichmann, O. and Shenker, M. 2010. Hydrochemical analysis of groundwater using a tree-based model. Journal of Hydrology 387: 273–282.
Quinlan, J.R. 1993. C4.5 Programs for machine learning, Morgan, Kaufmann, San Mateo, California.
Quinlan, J.R. 2000. Data mining tools See5 and C5.0 [cited Feb 2012]. Available from http://www.rulequest.com/see5-info.html.
Rasekh, A. and Brumbelow, K. 2014. Drinking water distribution systems contamination management to reduce public health impacts and system service interruptions. Journal Environmental Modelling & Software, 51: 12-25.
Saghebian, S.M. Sattari, M.T. Mirabbasi, R. Pal, M. 2014. Ground water quality classification by decision tree method in Ardebil region, Iran, Arabian Journal of Geosciences, 7: 4746-4777.
Sattari, M.T., Mahesh P. and Apaydin, H. 2013. M5 model tree application in Daily River flow forecasting in Sohu Stream, Turkey, Water Resources, 4(3): 233-242.
Spruill, T.B. Showers, W.J. and Howe, S.S. 2002. Application of classification tree methods to identify nitrate sources in ground water. Environmental Quality, 31: 1538–1549.
Tapak, L. Rahmani, A.R. and Moghimbeigi, A. 2014. Prediction the groundwater level of Hamadan-Bahar Plain, west of Iran using Support Vector Machines, Journal of Research in Health Sciences, 14(1): 81-86.
Witten, I.H. Frank, E. 2005. Data Mining: Practical Machine Learning Tools and Techniques, Second edition, Elsevier: San Francisco, ISBN 0-12-088407-0.