The Hydrogeochemical processes of Kuhdasht aquifer

Document Type : Research paper

Authors

1 MSc. In Hydrogeology, Shahid Beheshti University

2 PhD in Hydrogeology, Faculty of Earth Sciences, Shahid Beheshti University

Abstract

The hydrogeochemical methods are used to determine of the dominant natural processes governing the groundwater hydrogeochemistry and the effects of the hydrocarbon pollution on groundwater quality in Kuhdasht aquifer. Groundwater samples were collected in four periods in 2014 (16 and 25 water wells in three and one periods, respectively) to measure the electrical conductivity, major ions concentrations, trace ion and pollution indices concentrations (I, Fe, Zn, Ba, dissolved oxygen, chemical and biochemical oxygen demand (COD and BOD), and pH), and hydrocarbons. After review of the geology and hydrogeology of the study area, hydrogeochemistry of the aquifer was studied as determination of hydrochemical types of waters, interpretation of hydrochemical maps and composition diagrams with emphasis on the natural changes in groundwater hydrochemistry and abnormal changes as a results of the hydrocarbon contamination. The results show that the geochemical evolution of groundwater in Kuhdasht plain changes from HCO3-Ca(Mg) to HCO3(SO4)-Mg water types together a gradual increase of the concentrations of dissolved ions, with the anomalous Na-Cl water types in the hydrocarbon contaminated groundwater in southwest  parts of the plain. The main hydrochemical characteristic of the groundwater in the areas affected by oil brines in the south west Kuhdasht are the highly reducing environment with high concentration of BOD, and COD and low concentrations of DO and NO3, and high concentrations of  TDS, Na, Cl, B.

Keywords


تژه، ف.، و باقری تیر تاشی، ر.، 1392. ارزیابی ژئوشیمیایی چشمه‌های نفتی تراوش یافته در ساختمان کوهدشت ناحیه‌ی لرستان. سی و دومین گردهمایی و نخستین کنگره بین‌المللی تخصصی علوم زمین، 30-27 بهمن، سازمان زمین شناسی و اکتشافات معدنی کشور، تهران.
شرکت آب منطقه‌ای لرستان، 1393. نتایج آزمایش‌های فیزیکی آب زیرزمینی پروژه پایش کیفی محدوده کوهدشت.
Brindha K., and Elango L., 2014. PAHs Contamination in groundwater from a part of Metropolitancity, INDIA: a study based on sampling over a 10- year period" Environmental Earth Sciences, 71, 5113-5120.
Chen H., Ren Z., Liu R., Liu F., Zhang G., 2008. Contamination characteristics and mechanism of groundwater movement in an oilfield in Northeast China. Earth Sciences Front, 15(4), 178–185.
Cortes J. E., Muñoz L. F., Gonzalez C. A., Niño J. E., Polo A., Suspes A., Siachoque S. C., Hernández A., Trujillo H., 2016. Hydrogeochemistry of the formation waters in the San Francisco field, UMV basin, Colombia – A multivariate statistical approach. Journal of Hydrology, 539, 113-124.
 Gleason R., Preston T., Smith B., Tangen B., Thamke J., 2011.Examination of brine contamination risk to aquatic resources from petroleum development in the Williston Basin.U.S. Geological Survey Fact Sheet, 2011-3047.
Jeong C. H., 2001. Effect of land use and urbanization on hydrochemistry and contamination of ground water from Taejon area, Korea. Journal of Hydrology, 253, 194-210.
Lakshmanan E., Kannan R., Senthil Kumar M., 2003. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4), 157-166.
Mazor E. 2005. Global Water Dynamics, Shallow and Deep Groundwater, Petroleum Hydrology, Hydrothermal Fluids, and landscaping. Marcel Dekker, Inc., New York, 416 p.
Monjerezi M., Vogt R. D., Aagaard P., Saka J. D. K. 2012. The hydro-geochemistry of groundwater resources in an area with prevailing saline groundwater, lower Shire Valley, Malawi. Journal of African Earth Sciences, 68, 67-81.
Peterman Z. E., Thamke J., Futa K., Preston T., 2012.Strontium isotope systematic of mixing groundwater and oil-field brine at Goose Lake in northeastern Montana, USA.Applied Chemistry, 27, 2403-2408.
Redwan M., Abdel Moneim A. A., 2016. Factors controlling groundwater hydrogeochemistry in the area west of Tahta, Sohag, Upper Egypt. Journal of African Earth Sciences, 118, 328-338.
Reiten J. C., Tischmak T., 1993. Appraisal of oil field brine contamination in shallow groundwater and surface water, eastern Sheridan County, Montana.Billings, Mont., Montana Bureau of Mines and Geology, Open-File Report 260, 300.
Voutsis N., Kelepertzis E., Tziritis E., Kelepertsis A., 2015. Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. Journal of Geochemical Exploration, 159, 79-92.