Effect of Unconfined Aquifer Bed Slope on Groundwater Table due to Precipitation by Numerical Modeling

Document Type : Research paper

Authors

1 Former MSc Geotechnical. Student, Department of Civil Engineering, Faculty of Engineering, Yasouj University, Yasouj, Iran.

2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Yasouj University, Yasouj, Iran..

3 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Yasouj University, Yasouj, Iran.

4 Associate Professor, Department of Civil Engineering, Faculty of Engineering, Yasouj University, Yasouj, Iran.

Abstract

The present study investigates the effect of the slope of the Unconfined aquifer bed on groundwater level changes due to precipitation. For this purpose, a schematic design of the problem along with the relevant parameters was modeled in the case where the flow is in the direction of the bed slope in two cases with and without precipitation using the PMWIN MODFLOW software. After validating the numerical modeling results, a parametric study was conducted to investigate the effect of the bed slope, precipitation intensity, and soil hydraulic conductivity coefficient during precipitation on changes in the water level of the free aquifer. The results showed that the effect of the bed slope on the groundwater level is more obvious in heavier precipitation and that the effect of the slope on changes in the groundwater level profile is reduced by reducing the precipitation intensity. The analysis of the different hydraulic conductivity coefficients in the precipitation state at all slopes showed good agreement with each other, which indicates that the ratio of precipitation intensity to hydraulic conductivity coefficient (R/K) is dimensionless. The results indicate that the water level profile at all slopes follows a cubic equation. In the present study, relations were presented for the coefficients of this equation, which ultimately allow the groundwater level to be determined due to precipitation in a situation where the flow is in the direction of the bed slope.

Keywords

Main Subjects


اجل تاران، ف.، ناظمی، ا ح.، صدرالدینی، س ع ‌ا.، دین پژوه، ی.، 1395. بررسی تأثیر شیب خاک و شدت بارندگی بر انتقال محلول با استفاده از مطالعه آزمایشگاهی و مدل HYDRUS-2D. فصلنامه علمی پژوهشی مهندسی آبیاری، 7(21): 76-98.
پاک‌پرور، م.، نکوییان، غ ع.، قهاری، غ م.، چراغی، س ع م.، مجیدی، ع ر.، 1402. اندازه‌گیری مستقیم و شبیه‌سازی اثر میزان سیالب بر نرخ تغذیه به آبخوان در سامانة پخش سیلاب گربایگان. مدل‌سازی و مدیریت آب و خاک، 3(3): 256-276.
جعفرزاده، ا.، خاشعی سیوکی، ع.، پوررضا بیلندی، م.، 1399. ارزیابی عملکرد روش‌ها عددی در شبیه‌سازی جریان آب زیرزمینی (مطالعه موردی: آبخوان بیرجند). هیدروژئولوژی، 7(2): 61-75.
حسین‌زاده کوهی، ح.، اردستانی، م.، 1403. مدل‌سازی و بررسی وضعیت کمی آب‌های زیرزمینی آبخوان مهیار جنوبی-دشت آسمان با استفاده از مدل MODFLOW. مدل‌سازی و مدیریت آب و خاک، 4(1): 1-17.
خدایاری، م.، حصاری، ب.، احمدی، ح.، محمدپور، م.، 1402. ارزیابی کارایی طرح تغذیه مصنوعی بر بهبود وضعیت آب زیرزمینی با مدل ریاضی (مطالعه موردی دشت فیرورق خوی در استان آذربایجان غربی). هیدروژئولوژی، 8(1): 170-186.
رئوف، م.، صدرالدینی، س ع ا.، ناظمی، ا ح.، معروفی، ص.، 1390. بررسی تأثیر شیب زمین روی میزان نفوذ برخی از مشخصه‌های فیزیکی خاک. دانش آب و خاک، 21(1): 57-68.
شیخابگم قلعه، س.، بابازاده، ح.، رضایی، ح.، سرایی تبریزی، م.، 1402. مدل‌سازی عددی و تحلیل روند وضعیت کمی آبخوان مهاباد. مدل‌سازی و مدیریت آب و خاک، 3(2): 1-17.
صباح‌نیا، د.، صادقی لاری، ع.، 1403. مدل‌سازی کمی آب‌زیرزمینی با استفاده از GMS-MODFLOW (مطالعه موردی: آبخوان شمیل در استان هرمزگان). هیدروژئولوژی، 9(1): 71-85.
وزیریان، س م.، امانیان، ن.، زینی، م.، 1391. اثر شیب بستر نفوذناپذیر و گرادیان هیدرولیکی بر آبدهی نسبی چاه در چند نوع خاک با دانه‌بندی‌های مختلف. نهمین کنگره بین المللی مهندسی عمران، 19-21 اردیبهشت 1391، اصفهان، ایران.
Referance
Ajal Taran, F., Nazimi, A., Ashraf Sadradaldini, A., Din Pajoh, A., 2015. Investigating the effect of soil slope and rainfall intensity on solute transport using a laboratory study and HYDRUS-2D model. Irrigation Engineering Research Quarterly, 7(21): 76-98. [In Persian]
Akylas, E., Koussis, A., Yannacopoulos, A., 2006. Analytical solution of transient flow in a sloping soil layer with recharge. Des Sciences Hydrologiques, 51(4): 624-641.
Akylas, E., Koussis, A., 2007. Response of sloping unconfined aquifer to stage changes in adjacent stream. I. Theoretical analysis and derivation of system response functions. Hydrology, 338: 85-95.
Bansal, R.K., Das, S.K., 2010. Analytical Study of Water Table Fluctuation in Unconfined Aquifers due to Varying Bed Slopes and Spatial Location of the Recharge Basin. Hydrologic Engineering, 15(11): 909-917.
Bansal, R.K., Das, S.K., 2009. Effects of Bed Slope on Water Head and Flow Rate at the Interfaces between the Stream and Groundwater: Analytical Study. Hydrologic Engineering, 14(8): 832-838.
Chapman, T.G., 1980. Modeling Groundwater Flow Over Sloping Beds. Water Resources Research, 16(6): 1114-1118.
Chapuis, R.P., 2002. Solution analytique de l'écoulement en régime permanent dans un aquifère incliné à nappe libre, et comparaison de cette solution avec des solutions numériques plus completes. École Polytechnique de Montréal, Rapport Tech EPM-RT-02-03.
Chapuis, R.P., 2011. Steady state groundwater seepage in sloping unconfined aquifers. Geological and Mining Engineering, 70: 89-99.
Das, B.M., Sobhan, Kh., 2014. Principles of Geotechnical Engineering. Eighth Edition, Shortt, Ch.M., United States of America, 771 p.
Jafarzadeh, A., Khashei Siwki, A., PurrezaBilondi, M., 2022. Performance Assessment of Numerical Solutions in Groundwater Simulation (case study: Birjand aquifer). Hydrogeology, 7(2): 61-75. [In Persian]
Henderson, F.M., Wooding, R.A., 1964. Overland Flow and Groundwater Flow from a Steady Rainfall of Finite Duration. Geophysical research, 69(8): 1531-1540.
Hosseinzade Kuhi, H., Ardestani, M., 2024. Modeling and quantitative investigation of the groundwater condition of the South Mehyar-Dasht Asman aquifer by using the MODFLOW model. Water and Soil Management and Modeling, 4(1): 1-17. [In Persian]
Kamanbedast, A.A., Shafai Bejestan, M., 2008. Effect of Slope and Area Opening on the Discharge Ratio in Bottom Intake Structures. Applied Sciences, 8(14): 2631-2635.
Koussis, A., Akylas, E., Mazi, k., 2007. Response of sloping unconfined aquifer to stage changes in adjacent stream II. Applications. Hydrology, 338: 73-84.
Khodaiari, M., Hessari, B., Ahmadi, H., Mohammadpour, M., 2023. Evaluation of artificial recharge project efficiency for groundwater recovery with mathematical modeling (A case study on Firuraq of Khoy Plain in West Azerbaijan province). Hydrogeology, 8(1): 170-186. [In Persian]
Li, L.Q., Ju, N.P., 2016. Effect of the inclined weak interlayers on the rainfall response of a bedded rock slope. Mountain Science, 13(9): 1663-1674.
Ming, Ch.W., Ping, Ch.H., 2020. Variation of Groundwater Flow Caused by Any Spatiotemporally Varied Recharge. Water, 12(287): 1-17.
Mizumura, K., 2009. Approximate Solution of Nonlinear Boussinesq Equation. Hydrologic Engineering, 14: 1156-1164.
Mizushima, M., 2006. Unconfined groundwater flow using Hele-Shaw models. MS thesis, Kanazawa Institute of Technology, Kanazawa, Ishikawa Pref, Japan.
Pakparvar, M., Nekooeian, Gh., Ghahari, Gh., Cheraghi, S.A.M., Majidi, A., 2023. Direct measurement and simulation of flooding amount effect on recharge rate in Gareh Bygone floodwater spreading system. Water and Soil Management and Modeling, 3(3): 256-276. [In Persian]
Pathak, Sh.P., Singh, T., 2014. An Analysis on Groundwater Recharge by Mathematical Model in Inclined Porous Media. Hindawi International Scholarly Research Notices, 1-4.
Ping, Ch. H., Pin, Ch, L., 2021. Analytical modeling of groundwater flow of vertically multilayered soil stratification in response to temporally varied rainfall recharge. Applied Mathematical Modelling, 96: 584-597.
Rauf, M., Sadradaldini, A., Nazimi, A., Maroufi, P., 2010. Investigating the effect of land slope on infiltration rate and some physical characteristics of soil. Water and Soil Science, 21(1): 57-61. [In Persian]
Sabah Nia, D., Sadeghi Lari, A., 2024. Quantitative Modeling of Groundwater Using GMS-MODFLOW (Case Study: Shamil Aquifer in the Hormozgan Province). Hydrogeology, 9(1): 71-85. [In Persian]
Saxena, Sh., Bansal, R. K., Singh, B., 2021. Numerical Modeling of Water Table Fluctuation in Unconfined Sloping Aquifer in Response to Multiple Localized Recharge. Applied Science and Technology, 13-23.
Sheikha BagemGhaleh, S., Babazadeh, H., Rezaei, H., Sarai Tabrizi, M., 2023. Numerical modeling and trend analysis of Mahabad aquifer quantitative status. Water and Soil Management and Modeling, 3(2): 1-17. [In Persian]
Soon, M.N., Ashraf Mohamad Ismail, M., Abustan, I., 2020. Development of Groundwater Level Fluctuation Response System Subjected to Rainfall for Slope Stability Forecasting. Geological Society of India, 96: 616-622.
Vazirian, M., Amanian, N., Zaini, M., 2011. The effect of impervious bed slope and hydraulic gradient on the relative well drainage in several types of soil with different grain sizes. 9th International Congress of Civil Engineering, University of Isfahan. [In Persian]
Verhoest, N.E.C., Troch, P.A., 2000. Some analytical solutions of the linearized Boussinesq equation with recharge for a sloping aquifer. Water Resources Research, 36(3): 793-800.
Wang, H., En Gao, J., Zhang, M.J., Li, X.H., Zhang, Sh.L., Jia, L.Z., 2015. Effects of rainfall intensity on groundwater recharge based on simulated rainfall experiments and a groundwater flow model. Catena, 127:80-91.
Ya, Ch.Ch., Hund, D.Y., 2007. Analytical solution for groundwater flow in an anisotropic sloping aquifer with arbitrarily located multiwells. Hydrology, 347: 143- 152.
 Zamani Lenjani, M., 2022. Groundwater Flow Analysis for Inclined Aquifers. Ground water, 1-6.