Efficiency of natural zeolite in the removal of heavy metals lead, cadmium, and cobalt using a fixed-bed adsorption column in Varamin aquifer (Iran, Tehran Province)

Document Type : Research paper

Authors

1 Professor, Department of Applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran.

2 Ph.D. student in Hydrogeology, Department of Applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran.

3 Associate Professor, Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran.

4 Associate Professor, Department of Applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran.

10.22034/hydro.2023.56673.1289

Abstract

In the last few decades, pollution caused by heavy metals in groundwater sources has been recognized as a major environmental problem. In this research, the ability of clinoptilolite zeolite as a low-cost adsorbent for the removal of heavy metal ions specifically lead, cadmium, and cobalt (which have a higher concentration than the permissible limit of drinking standard indicators in the Varamin region) in continuous absorption systems was investigated. XRD, XRF, ICP-MS, BET, and FESEM tests were carried out to check the characteristics of the absorbent materials, to determine the crystal structure, type, and percentage of minerals, and to check the concentration of elements. Equilibrium sorption studies were carried out using discontinuous experiments to analyze the sorption capacity of clinoptilolite. Langmuir and Freundlich adsorption models were fitted to the data and the effect of the initial concentration of the solution at different pH was determined using adsorption experiments to validate the measured data, fitting statistical parameters such as root mean square error (RMSE) and regression coefficient (R2) were used and the Langmuir model showed a better fit to the absorption data of the above elements. In continuous experiments, the height of the fixed layer of clinoptilolite was 40 cm, the column diameter was 4 cm, the particle size was 0.42 to 0.84 mm, and the volumetric flow rate, was 1.65 ml/min. The breakthrough curves generated fromthe laboratory data were in good agreement with the Thomas model and Yoon-Nelson model. This research demonstrates that clinoptilolite can be an effective adsorbent for the removal of heavy metals such as lead, cadmium, and cobalt and has the potential to be used in the development a new in-situ remediation approach for the removal of these metals from polluted groundwater.

Keywords

Main Subjects


استاندارد ملی ایران، 1376. ویژگی‌های فیزیکی و شیمیایی آب آشامیدنی شماره 1053.
سلیمانی قره‌گل، م.، بدو،ک.، نعمتی اخگر، ب.، 1400. حذف سیانید از محلول‌های آبی با استفاده از زئولیت طبیعی اصلاح شده با سورفکتانت کاتیونی. هیدروژئولوژی، 6(2): 121-131.
عطارزاده، آ.،توانا، ب.، ابرازی، ب.، 1394. مطالعات کیفی و آلودگی آبخوان ورامین( مطالعات آب زیرزمینی)، شرکت مهندسین مشاور یکم.
قهرمانی تبار، م.، خلفی، ح.، ابراهیمی، ک.، مردانی، ز.، 1397. پایش حرکت MTBE در محیط متخلخل با استفاده از مدل آزمایشگاهی. هیدروژئولوژی، 3 (2): 18-10.
محمودیان شوشتری م.، 1389. هیدرولیک آب‌های زیرزمینی، چاپ اول، انتشارات دانشگاه شهید چمران اهواز، اهواز، 600 ص
Aghel, B., Mohadesi, M., Gouran, A., Razmegir, M.H., 2020. Use of modified Iranian clinoptilolite zeolite for cadmium and lead removal from oil refinery wastewater. International Journal of Environmental Science and Technology, 17(3): 1239-1250.
Ambroz, F., Macdonald, T.J., Martis, V., Parkin, I.P., 2018. Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small methods, 2(11): 1800173.
Araissi, M., Elaloui, E., Moussaoui, Y., 2020. The removal of cadmium, cobalt, and nickel by adsorption with Na-Y zeolite. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(5): 169-179.
Aziz, R.A., Fauzi, N.F.N., Salleh, M.N., Saleh, M., 2021. Removal of copper and magnesium cations from aqueous solutions by clinoptilolite zeolite adsorption. In IOP Conference Series: Earth and Environmental Science, 765(1): 012028.
Bae, Y.S., Yazaydın, A.O., Snurr, R.Q., 2010. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores. Langmuir, 26(8):5475-5483.
Batjargal, T., Yang, J.S., Kim, D.H., Baek, K., 2011. Removal characteristics of Cd (II), Cu (II), Pb (II), and Zn (II) by natural mongolian zeolite through batch and column experiments. Separation Science and Technology, 46(8): 1313-1320.
Batonneau-Gener, I., Sachse, A., 2019. Determination of the exact microporous volume and BET surface area in hierarchical ZSM-5. The Journal of Physical Chemistry C, 123(7): 4235-4242.
Behin, J., Ghadamnan, E., Kazemian, H., 2019. Recent advances in the science and technology of natural zeolites in Iran. Clay Minerals, 54(2): 131-144.
Bogdanov, B., Georgiev, D., Angelova, K., Yaneva, K., 2009. Natural zeolites: clinoptilolite. Review, Natural& Mathematical science, 4: 6-11.
Chittoo, B.S., Sutherland, C., 2020. Column breakthrough studies for the removal and recovery of phosphate by lime-iron sludge: Modeling and optimization using artificial neural network and adaptive neuro-fuzzy inference system. Chinese Journal of Chemical Engineering, 28(7): 1847-1859.
Erdem, E., Karapinar, N., Donat, R., 2004. The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 280: 309–31 4
El-Azim, H.A., Mourad, F.A., 2018. Removal of heavy metals Cd (II), Fe (III) and Ni (II), from aqueous solutions by natural (clinoptilolite) zeolites and application to industrial wastewater. Asian Journal of Environment & Ecology, 1-13.
Fetter, C.W., Boving, T., Kreamer, D., 2017. Contaminant Hydrogeology. Waveland Press.
Förstner, U., Wittmann, G.T., 2012. Metal pollution in the aquatic environment. Springer Science & Business Media.
Galletti, C., Dosa, M., Russo, N., Fino, D., 2021. Zn 2+ and Cd 2+ Removal from wastewater using clinoptilolite as adsorbent. Environmental Science and Pollution Research, 1-7.
Golie, W.M., Upadhyayula, S., 2016. Continuous fixed-bed column study for the removal of nitrate from water using chitosan/alumina composite. Journal of Water Process Engineering, 12: 58-65.
Gupta, N., Kushwaha, K., MC Chattopadhyaya, A., 2011. Adsorption of cobalt (II) from aqueous solution onto hydroxyapatite/zeolite composite. Advanced Materials Letters, 2(4): 309-312.
Inglezakis, V.J., Stylianou, M.A., Gkantzou, D., Loizidou, M.D., 2007. Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination, 210(1-3): 248-256.
Lewis, J., Sjöstrom, J., 2010. Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. Journal of Contaminant Hydrology 115: 1–13.
Li, Y., Wu, M., Wu, J., Wang, Y., Zheng, Z., Jiang, Z., 2022. Mechanistic insight and rapid co-adsorption of nitrogen pollution from micro-polluted water over MgAl-layered double hydroxide composite based on zeolite. Separation and Purification Technology, 297: 121484.
Lim, A.P., Aris, A.Z., 2014. Continuous fixed-bed column study and adsorption modeling: Removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons. Biochemical Engineering Journal, 87: 50-61.
Medvidović, N.V., Perić, J., Trgo, M., 2006. Column performance in lead removal from aqueous solutions by fixed bed of natural zeolite–clinoptilolite. Separation and Purification Technology, 49(3): 237-244.
Nakhaei, M., Heidarian, M.H., Vatanpour, V., Rezaei, K., 2023. Evaluation the feasibility of using clinoptilolite as a gravel pack in water wells for removal of lead from contaminated groundwater. Environmental Science and Pollution Research, 30(2): 4653-4668.
Pandey, S., Fosso-Kankeu, E., Spiro, M.J., Waanders, F., Kumar, N., Ray, S.S., Kang, M. ,2020. Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Materials Today Chemistry, 18: 100376.
Pandová, I., Panda, A., Valíček, J., Harničárová, M., Kušnerová, M., Palková, Z., 2018. Use of Sorption of Copper Cations by Clinoptilolite for Wastewater Treatment. International journal of environmental research and public health, 15(7): 1364.
Patel, H., 2019. Fixed-bed column adsorption study: a comprehensive review. Applied Water Science, 9(3): 1-17.
Pourshirband, N., Nezamzadeh-Ejhieh, A., 2020. Experimental design on determination of Sn (II) by the modified carbon paste electrode with Fe (II)-exchanged clinoptilolite nanoparticles. Solid State Sciences, 99: 106082.
Taamneh, Y., Sharadqah, S., 2017. The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Applied Water Science, 7(4): 2021-2028.
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and applied chemistry, 87(9-10): 1051-1069.
World Health Organization., 2008. Guidelines for drinking-water quality: second addendum. Vol. 1, Recommendations. World Health Organization.
Yagub, M.T., Sen, T.K., Afroze, S., Ang, H.M., 2015. Fixed-bed dynamic column adsorption study of methylene blue (MB) onto pine cone. Desalination and Water Treatment, 55(4): 1026-1039.
Yakout, S.M., Borai, E.H., 2014. Adsorption behavior of cadmium onto natural chabazite: batch and column investigations. Desalination and Water Treatment, 52(22-24): 4212-4222.
Yakout, S., Hassan, M., Omar, H., 2019. Fixed-bed column study for the removal of hexavalent chromium ions from aqueous solutions via pyrolysis of the rice husk. Desalination and Water Treatment, 170: 128-37.