Evaluating the time lag of the drop in groundwater level compared to the occurrence of subsidence using vulnerability analysis in the Tasuj Plain aquifer

Document Type : Research paper

Authors

1 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, University of Bonab, East Azerbaijan, Iran.

2 Associated Professor, Department of Civil Engineering, University of Maragheh, East Azerbaijan, Iran.

10.22034/hydro.2023.55467.1283

Abstract

Subsidence in the plains due to the over-exploitation of groundwater resources is one of the problems facing most of the country's plains. The drop in the water table of aquifers is the triggering factor for subsidence occurrence. However, due to the complexity of the nature of the problem, subsidence may not start immediately after the drop in the water table. In this study, a step has been taken in the direction of understanding the time lag in the water table drop in the occurrence of subsidence. The aquifer of Tasuj plain, as the study area, is located north of Lake Urmia in East Azerbaijan province. The amount of subsidence has been quantified by the INSAR technique in a differential manner in the plain. The research results also identify the vulnerable areas of this aquifer against subsidence. Due to the dynamic nature of the water table drop, which leads to the dynamics of the vulnerability results, the correlation of the vulnerability results with the INSAR results was calculated using the ROC curve and it was observed that the highest correlation was related to the water table drop two years ago of subsidence records. The subsidence occurs with a two-year time lag compared to the drop in the water table.

Keywords

Main Subjects


اسدی، م.، گنجائیان، ح.، جاودانی، م.، قادری حسب، م.، 1400. ارزیابی ارتباط بین عوامل طبیعی و میزان فرونشست در دشت ایوانکی با استفاده از تصاویر رادار. هیدروژئولوژی, 6(1): 13-22.‎
امیراحمدی، ا.، معالی‌اهری، ن.، احمدی، ط.، 1392. تعیین مناطق فرونشست احتمالی دشت اردبیل با استفاده از GIS. نشریه علمی و پژوهشی جغرافیا و برنامه‌ریزی، 17(46): 1-23.
حسینی میلانی، م.، ۱۳۷۳. اضافه برداشت از منابع آب زیرزمینی و اثرات آن. مجموعه مقالات کنفرانس ملی منـابع آب زیرزمینـی، دانشگاه سیرجان، سیرجان، ۹1-۹8.
داداشی، ث.، صادق فام، س.، ندیری، ع.، محبی، ی.، 1399. تحلیل آسیب‌پذیری فرونشست آبخوان دشت مرند با استفاده از روش A‌L‌P‌R‌I‌F‌T بر اثر بهره‌برداری بیش‌ازحد از منابع آب زیرزمینی. مهندسی عمران، 36(3.1)، 85-96.‎
عفیفی، م.ا.، 1395. ارزیابی پتانسیل فرونشست زمین و عوامل مؤثر بر آن (مطالعه موردی: دشت سیدان فاروق مرودشت). پژوهش‌های ژئومورفولوژی کمی، 5(3): 121-132.
نادری، ک.، ندیری، ع.ا.، اصغری مقدم، ا.، کرد، م.، 1397. روشی جدید برای شناسایی و تعیین مناطق در معرض خطر فرونشست (مطالعه موردی: آبخوان دشت سلماس). اکو هیدرولوژی، 5(1): 85-97.
نیکبخت، ج.، ذوالفقاری, ن.، 1395. پیش‌بینی سطح آب زیرزمینی دشت تسوج-آذربایجان‌شرقی با کمک شبکه‌های عصبی مصنوعی. هیدروژئولوژی, 1(2): 99-115.‎
Balogun, W. O., Anifowose, M., Shogo, M., Salaudeen, F., 2011. Trends and mechanisms of land subsidence of a coastal plain in the delta of Yangtze River-China. Researcher, 3: 76-81.
Choi, J. K., Won, J. S., Kim, S. W., Kim, K. D., Ryu, J. H., Yoo, H. R., 2010, July. Integration of InSAR and GIS for an estimation of ground subsidence susceptibility. In 2010 IEEE International Geoscience and Remote Sensing Symposium, 4588-4591. IEEE.
Dehghani, M., Rastegarfar, M., Ashrafi, R. A., Ghazipour, N., Khorramrooz, H. R., 2014. Interferometric SAR and geospatial techniques used for subsidence study in the Rafsanjan plain. Am J Environ Eng, 4(2): 32-40.
Gharekhani, M., Nadiri, A. A., Khatibi, R., & Sadeghfam, S., 2021. An investigation into time-variant subsidence potentials using inclusive multiple modelling strategies. Journal of Environmental Management, 294, 112949.
Hu, B., Zhou, J., Wang, J., Chen, Z., Wang, D., Xu, S., 2009. Risk assessment of land subsidence at Tianjin coastal area in China. Environmental Earth Sciences, 59(2): 269.
Huang, B., Shu, L., Yang, Y. S., 2012. Groundwater overexploitation causing land subsidence: hazard risk assessment using field observation and spatial modelling. Water resources management, 26(14): 4225-4239.
Kim, K. D., Lee, S., Oh, H. J., 2009. Prediction of ground subsidence in Samcheok City, Korea using artificial neural networks and GIS. Environmental Geology, 58(1): 61-70.
Nadiri, A. A., Taheri, Z., Khatibi, R., Barzegari, G., Dideban, K., 2018. Introducing a new framework for mapping subsidence vulnerability indices (SVIs): ALPRIFT. Science of the Total Environment, 628: 1043-1057.
Nadiri, A. A., Moazamnia, M., Sadeghfam, S., & Barzegar, R., 2021. Mapping risk to land subsidence: Developing a two-level modeling strategy by combining multi-criteria decision-making and artificial intelligence techniques. Water, 13(19), 2622.
Piscopo, G., 2001. Groundwater Vulnerability Map. Ex planatory Notes, Castlereagh Catchment, NSW; Department of Land andWater Conservation: Parramatta, Australia.
Sadeghfam, S., Khatibi, R., Dadashi, S., & Nadiri, A. A., 2020a. Transforming subsidence vulnerability indexing based on ALPRIFT into risk indexing using a new fuzzy-catastrophe scheme. Environmental Impact Assessment Review, 82, 106352.
Sadeghfam, S., Nourbakhsh Khiyabani, F., Khatibi, R., & Daneshfaraz, R., 2020b. A study of land subsidence problems by ALPRIFT for vulnerability indexing and risk indexing and treating subjectivity by strategy at two levels. Journal of Hydroinformatics, 22(6), 1640-1662.
Shrestha, P. K., Shakya, N. M., Pandey, V. P., Birkinshaw, S. J., Shrestha, S., 2017. Model-based estimation of land subsidence in Kathmandu Valley, Nepal. Geomatics, Natural Hazards and Risk, 8(2): 974-996.
Swets, J. A., 1988. Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285-1293.