Numerical modeling, groundwater management, and evaluation of optimal water pumping rate in Gohar Zamin Iron Ore Mine (Sirjan-Iran)

Document Type : Research paper

Authors

1 Ph.D. in Mining Engineering, Department of Mining Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Iran.

2 Associated Professor, Department of Mining Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Iran.

3 Professor, Department of Electrical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Iran.

10.22034/hydro.2023.49719.1256

Abstract

Increasing the depth of mining leads to placing the level of the mine pit in the area of mineral extraction below the groundwater level. The entry of groundwater into the mining pit increases the costs and also reduces the efficiency and safety level of the work. Gohar Zamin Iron Ore Mine with a reserve of approximately 600 million tons is one of the largest open-pit iron mines in the Middle East in the southwest of Sirjan city, located in Kerman province, which currently has a problem with groundwater entering the mine pit. In this research, MODFLOW software has been used in the complex environment of the Gohr Zamin Iron Ore Mine to model and predict the movement of underground water and the proper management of the drainage process. Due to the heterogeneity of the underground layers, which causes many changes in the hydrodynamic parameters in each place, an innovative Pilot Point network has been used to interpolate the value of the hydrodynamic parameters required by the model. After the calibration and validation of the model, the direction of the groundwater flow in the studied area is from the north side of the pit to the west. The amount of inflow water from the northern part of the pit and the outgoing water from the western part of the pit is about 679 and 1448 cubic meters per day, respectively. In the end, by performing optimization by the model, the position of seven new wells and the optimal pumped flow rate for existing and new wells in a proposed drainage scenario was determined. The prediction results of the model show a decrease in water level by 14 meters in the northern part and 10 meters in the eastern part of the studied area within one month.

Keywords

Main Subjects


جهانشاهی، ر.، 1392. اثرات زیست محیطی معدن سنگ آهن گل گهر بر آب های زیرزمینی منطقه، پایان نامه دکتری، دانشگاه شیراز.
حسن‌زاده، ف.، کمالی، غ.، رنجبر، ح.، و سبزواری، م.، 1394. تخمین پارامترهای هیدرولیکی سفره های آب زیرزمینی با استفاده از داده های لاگ سنگ شناسی و سونداژ زنی ژئوالکتریکی (مطالعه موردی: معدن شماره 1 گل گهر سیرجان). علوم و مهندسی آبخیزداری ایران، 29(9): 19-26.
خالدی‌علمداری، م.، مجنونی‌هریس، ا.، و فاخری‌فرد، ا.، 1401. برآورد هدایت هیدرولیکی و ضریب‌ذخیره آبخوان دشت شبستر با استفاده از مدل عددی. هیدروژئولوژی، 1(7): 42-52.
کرد، م.، اصغری مقدم، ا.، و نخعی، م.، 1398. مدل‌سازی عددی آبخوان دشت اردبیل و مدیریت آن با استفاده از بهینه‌سازی برداشت آب زیرزمینی. هیدروژئولوژی، 4(1): 153-167.
نخعی، م.، حسنی، ع.، مقیمی، ه.، و نوین‌پور، ا.، 1400. پیش‌بینی اثرات ناشی از بهره‌برداری بی‌رویه بر آبخوان دشت زرندیه (استان مرکزی) با استفاده از نرم‌افزار GMS. هیدروژئولوژی، 6(2): 13-29.
ندیری، ع.، نادری، ک.، اصغری‌مقدم، ا.، و حبیبی، م. ح.، 1395. پیش‌بینی زمانی و مکانی سطح آب زیرزمینی با استفاده از روش‌های هوش مصنوعی و زمین آمار (مطالعه موردی: آبخوان دشت دوزدوزان). جغرافیا و برنامه‌ریزی، 20(58): 281-301.
Adhikari, K., and Mal, U., 2021. Evaluation of contamination of manganese in groundwater from overburden dumps of Lower Gondwana coal mines, Environmental Earth Sciences, 80: 23.
Anderson, M.P., Woessner, W.W., 1992. Applied groundwater modeling flow and advective transport. Academic press, Inc. 381 p.
Hai, W., and Meiling, T., 2022. Water resources protection of mining area in Toutun river basin of Tianshan Mountains: a case study of Liuhuanggou Coal Mine, Environmental Earth Sciences, 81: 372.
Kumar, N., Sarcar, A., 2013. Review on Dewatering Pumping Network for Underground Coal Mine, Proceedings Of the 1th International and 16th National Conference On Machines and Mechanism,India, 957-964.
Hermite, L.P., Plagnes, V., Jost, A., Kern, G., Reilé, B., Chautard, C., and Descostes, M., 2022. Characterizing groundwater flow in a former uranium mine (Bertholène, France): Present status and future considerations, Journal of Hydrology: Regional Studies, 44: 101221.
Liu, S., Dai, S., Zhang, W., Li, W., Liu, Y., Ren, Y., and Li. W., 2022. Impacts of underground coal mining on phreatic water level variation in arid and semiarid mining areas: a case study from the Yushenfu mining area, China, Environmental Earth Sciences, 81: 269.
Lu, C., Chen, Y., Zhang, C., Luo, J., 2013. Steady-state freshwater–seawater mixing zone in stratified coastal aquifers, Journal of Hydrology. 505: 24-34.
Mohan, S., Kumudesan Pramada, S., and Anju, M., 2022. Management of dewatering schemes in an open cast mine operation using groundwater flow modeling: a case study of karst aquifer, Tamil Nadu, India, Acta Geophysica, 70: 283-303.
Mohanty, S., Madan K.J., Kumar, A., Panda, Dileep, K.P., 2013. Comparative evaluation of numerical model and artificial neural network for simulation groundwater flow in Kathjadi-surua Inter-basin of adisha, India, Journal of Hydrology, 495: 38-51.
Najafabadipour, A., Kamali, G.R., 2017. 3D Modeling and Bedrock Determination Using Electrical Resistivity Inversion. 23rd European Meeting of Environmental and Engineering Geophysics, September, Sweden, (1): 1-5.
Najafabadipour, A., Kamali, G.R., 2019. Exploring and Modelling the Qanat Gallery Path Using Electrical Resistivity Tomography Data, 1st Conference on Geophysics for Infrastructure Planning Monitoring and BIM, September, Netherlands,  (1): 1-5.
Najafabadipour, A., Kamali, G., Nezamabadi-pour, H., 2022a. Application of Artificial Intelligence Techniques for the Determination of Groundwater Level Using Spatio–Temporal Parameters. ACS Omega. 7(12): 10751-64.
Najafabadipour, A., Kamali, G., Nezamabadi-pour, H., 2022b. The Innovative Combination of Time Series Analysis Methods for the Forecasting of Groundwater Fluctuations. Water Resources. 49(2): 283-91.
Sahooa, L.K., Bandyopaphyay, S., Banerjee, R., 2014. Water and energy assessment for dewatering in opencast mines, Journal of Cleaner Production, 84: 736-745.
Simin, J., Xianglang, K., Hong, Y., Nianqing, Z., 2012. Groundwater dewatering optimization in the Shengli no. 1 open-pit coalmine, Inner Mongolia, China, Environ Earth Science, 10(1): 187–196.
Singh, R.N., Reed, S.M., 1988. Mathematical modelling for estimation of mine water inflow to a surface mining operation, international journal of mine water, 7: 1-34.
Surinaidu, L., Guranadha, Rao.V.V.S., Srinivasa, Rao.V., Srinu, S., 2014. Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India, Journal Water Resources and Industry, 7: 49-65.
Tziatzios, G., Sidiropoulos, P., Vasiliades, L., Lyra. A., Mylopoulos. N., Loukas. A., 2019. The use of the pilot points method on groundwater modelling for a degraded aquifer with limited field data: the case of Lake Karla aquifer, Water Supply (2021) 21 (6): 2633–2645.
Whithe, S.P., Creighton, A., Bixley. P., Kissling, W.M., 2004. Modeling the dewatering and depressurization of the Lihir open-pit gold mine.," Geothermics, 3: 443-456.
Yang, T.H., Liu, J., Zhu, W.C., Elsworth.D., Tham.L.G., Tang.C.A., 2007. A Coupled Flow- stress-damage Model For Groundwater Outbursts From An Underlying Aquifer into Mining Excavations, International journal of Rock Mechanics & Mining Science, 44: 87-97.