Prediction of short-time and long-time of land use change in groundwater vulnerability by DRASTIC index and TerrSet software

Document Type : Research paper

Authors

1 Ph.D Candidate, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Associate Professor, Department of Water Engineering, College of Aburaihan, University of Tehran, Pakdasht, Iran.

3 Assistant Professor, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

10.22034/hydro.2022.48945.1253

Abstract

Today, due to widespread land use changes, including increasing urban population and drinking needs, industrial and agricultural growth of communities on the one hand and further reduction of surface water resources on the other hand has increased the use of groundwater resources. Therefore, it is necessary to evaluate the effect of land use change on aquifer vulnerability. Since the potential for pollution in different parts of an aquifer is different in terms of contaminants reaching the groundwater, predicting the extent of vulnerability changes in aquifers by predicting future land uses. In this study, for the first time, the effect of the future land use changes on the vulnerability of Hashtgerd aquifer for the periods of 2025, 2035 and 2045 has been investigated and compared with the current situation in 2018. In this regard, first, using the Markov chain method in TerrSet software, land use changes for the three periods of 2025, 2035 and 2045 were extracted. Land use mapping was performed using Landsat satellite images for 1998, 2008 and 2018 in ENVI 5.3 software. The generated maps were added as a parameter to the DRASTIC vulnerability method and finally DRASTIC-Lu was predicted for three periods. This study shows that the vulnerability in high and very high class in 2045 will increase by 34% and 83%, respectively. Furthermore, the increasing trend of vulnerability in the classroom is very high for three incremental periods and will increase from 14% in 2025 to 20% and 83% in 2035 and 2045. This study shows that in the coming years, in order to preserve groundwater resources, it is necessary to consider special monitoring measures in the northern and northeastern regions of the aquifer.

Keywords

Main Subjects


احمدی، ح.، زهتابیان، غ.، صادقی روشن، م. ح.، 2007. تجزیه‌وتحلیل حساسیت راهبردهای بهینه بیابان­زدایی درچارچوب فرایند تحلیلی سلسله مراتبی (AHP) مطالعه موردی منطقه خضرآبادیزد. جغرافیایی سرزمین،  4(3): 15-30.‎
ندیری، ع. ا.، صدقی، ز.، 1398. ارزیابی آسیب‌پذیری آبخوان‌های چندگانه با استفاده از روش‌های DRASTIC و SINTACS. هیدروژئولوژی، 4(2): 171-186.
سعیدی رضوی, ب.، 1399. بررسی آسیب‌پذیری آب زیرزمینی دشت گلپایگان با استفاده از بهینه‌سازی روش دراستیک. هیدروژئولوژی، 5(2): 61-74.
محمدپور، م.، زینال­زاده، ک.، رضاوردی­نژاد، و.، حصاری، ب.، 1399. بررسی نوسانات آب زیرزمینی تحت­تاثیر تغییر اقلیم و بهبود روش آبیاری (مطالعه موردی: دشت اهر). هیدروژئولوژی 5(2): 112-99.
Al-Adamat, R. A., Foster, I. D., Baban, S. M., 2003. Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Applied Geography, 23(4), 303-324.
Aller, L., Lehr, JH., Petty, RJ., Hackett, G., 1987. DRASTIC: A Standardised System For Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. US Environmental Protection Agency Report (EPA/600/2-87/035).
Allouche, N., Maanan, M., Gontara, M., Rollo, N., Jmal, I., Bouri, S. 2017. A global risk approach to assessing groundwater vulnerability. Environmental Modelling & Software, 88, 168-182.
Almasri, M. N., 2008. Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine. Journal of Environmental Management, 88(4): 577-593.
Al-Zabet, T., 2002. Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method. Environmental geology, 43(1): 203-208.
Asadi, P., Ataie-Ashtiani, B., Beheshti, A., 2017. Vulnerability assessment of urban groundwater resources to nitrate: the case study of Mashhad, Iran. Environmental Earth Sciences, 76(1): 41.
Babiker, I. S., Mohamed, M. A., Hiyama, T., Kato, K., 2005. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of the Total Environment, 345(1-3): 127-140.
Birhanu, A., Masih, I., van der Zaag, P., Nyssen, J., Cai, X., 2019. Impacts of land use and land cover changes on hydrology of the Gumara catchment, Ethiopia. Physics and Chemistry of the Earth, Parts A/B/C, 112, 165-174.
Gogu, R. C., Hallet, V., Dassargues, A. 2003. Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environmental Geology, 44(8): 881-892
Hao, J., Zhang, Y., Jia, Y., Wang, H., Niu, C., Gan, Y., Gong, Y., 2017. Assessing groundwater vulnerability and its inconsistency with groundwater quality, based on a modified DRASTIC model: a case study in Chaoyang District of Beijing City. Arabian Journal of Geosciences, 10(6): 144.
Islam, M. T., Huda, N., Abdullah, A. B., Saidur, R., 2018. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies:.Current status and research trends. Renewable and Sustainable Energy Reviews, 91: 987-1018
Javadi, S., Hashemy, S. M., Mohammadi, K., Howard, K. W. F., Neshat, A., 2017. Classification of aquifer vulnerability using K-means cluster analysis. Journal of hydrology, 549: 27-37.
Javadi, S., Kavehkar, N., Mohammadi, K., Khodadadi, A., Kahawita, R., 2011. Calibrating DRASTIC using field measurements, sensitivity analysis and statistical methods to assess groundwater vulnerability. Water International, 36(6): 719-732.
Javadi, S., Kavehkar, N., Mousavizadeh, M. H., Mohammadi, K., 2011. Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. Journal of Agricultural Science and Technology, 13(2): 239-249.
Kardan Moghaddam, H., Jafari, F., Javadi, S., 2017. Vulnerability evaluation of a coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrological Sciences Journal, 62(1): 137-146.
Kumar, A., Pramod Krishna, A., 2020. Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto International, 35(11): 1149-1178.
Machiwal, D., Cloutier, V., Güler, C., Kazakis, N., 2018. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environmental Earth Sciences, 77(19): 1-30.
Nadiri, A. A., Gharekhani, M., Khatibi, R., Moghaddam, A. A., 2017. Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models. Environmental Science and Pollution Research, 24(9): 8562-8577.
Nahin, K. T. K., Basak, R., Alam, R., 2020. Groundwater vulnerability assessment with DRASTIC index method in the salinity-affected southwest coastal region of Bangladesh: a case study in Bagerhat Sadar, Fakirhat and Rampal. Earth Systems and Environment, 4(1): 183-195.
Neshat, A., Pradhan, B. 2017., Evaluation of groundwater vulnerability to pollution using DRASTIC framework and GIS. Arabian Journal of Geosciences, 10(22): 501-509.
Neshat, A., Pradhan, B., Pirasteh, S., Shafri, H. Z. M., 2014. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environmental earth sciences, 71(7): 3119-3131.
Rahmani, B. E., Guefaifia, O., Gouaidia, L., Baali, F., 2021. Sensitivity analysis of groundwater vulnerability maps in the Messaad plateau. South Algerian steppe region. Algerian Journal of Environmental Science and Technology. 9(2): 3093-3100.
Ribeiro, L., Serra, E., Paralta, E., Nascimento, J., 2003. Nitrate pollution in hardrock formations: vulnerability and risk evaluation by geomathematical methods in Serpa-Brinches aquifer (South Portugal). In Proc IAH International Conference on Groundwater in Fractured Rocks, Prague, Czech Republic, IHP-VI, Series on Groundwater, 7: 377-378.
Saidi, S., Bouri, S., Ben Dhia, H., 2011. Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 56(2): 288-304.
Secunda, S., Collin, M. L., Melloul, A. J., 1998. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region. Journal of environmental management, 54(1): 39-57.
Shrestha, S., Kafle, R., Pandey, V. P., 2017. Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal. Science of the Total Environment, 575: 779-790.
Stigter, T. Y., Ribeiro, L., Dill, A. C., 2006. Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeology Journal, 14(1-2): 79-99.
Tarawally, M., Wenbo, X., Weiming, H., Mushore, T. D., Kursah, M. B., 2019. Land use/land cover change evaluation using land change modeller: A comparative analysis between two main cities in Sierra Leone. Remote Sensing Applications: Society and Environment, 16: 100262.
Torkashvand, M., Neshat, A., Javadi, S., Yousefi, H., 2021. DRASTIC framework improvement using stepwise weight assessment ratio analysis (SWARA) and combination of genetic algorithm and entropy. Environmental Science and Pollution Research, 28(34): 46704-46724.
Vías, J. M., Andreo, B., Perles, M. J., Carrasco, F., Vadillo, I., Jiménez, P., 2006. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeology Journal, 14(6): 912-925.
Wang, J., He, J., Chen, H., 2012. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Science of the Total Environment, 432: 216-226.