Estimation of Groundwater Variations using Optimized Gene Expression Programming model

Document Type : Research paper

Authors

1 Ph.D. Candidate, Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

2 Assistance Professor, Depatment of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

3 Associate Professor, Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Abstract

Groundwater plays a vital role in supplying water demands for different consumptions in dry and semi-dry regions of earth. Iran is considered as an arid and semi-arid region and its groundwater resources have recently shown some significant changes. Owing to the reduction of groundwater resources and recent droughts, simulation of groundwater level variations has significant importance. In some areas of the country of Iran, groundwater levels have been dropped significantly. Therefore, the prediction and simulation of the groundwater level variation are crucially important. In this study, the Gene Expression Programming (GEP) model was combined with Wavelet Transform (WT) to estimate long-term variations of groundwater level (GWL) in the Sarab-Ghanbar observation well over a 13-years period. Firstly, observation data were divided into two sub-samples, 9 years for training and 4 years for testing. Then, the most effective input lags were identified using the autocorrelation function. Next, four different models for each GEP and WGEP method were developed using the lags. The superior model was identified by analyzing all GEP and WGEP models. The superior GEP model simulated the GWL with acceptable accuracy. For instance, the correlation coefficient and Nash-Sutcliffe efficiency coefficient for the model were calculated at 0.938 and 0.851, respectively. A comparison between the GEP and WGEP models showed that the wavelet transforms enhanced the performance of simulation significantly. For example, Variance Accounted For (VAF) index for the best WGEP model was 14 times more than the best GEP model. In addition, the sensitivity analysis indicated that (t-1), (t-2), (t-3) and (t-4) lags were the most influenced input lags.

Keywords


اکبرزاده، ف.، حسن­پور، ح.، امامقلی زاده، ص.، 1395. پیش­بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی. مدیریت حوزه آبخیز، دوره ۷، شماره ۱۳، 104-۱۱۸.
ترابی، حسن.، نصرالهی، ع.ح.، دهقانی، ر.، 1398. ارزیابی مدل شبکه عصبی موجک در پیش‌بینی منابع آب زیرزمینی استان لرستان. هیدروژئولوژی، انتشار آنلاین از تاریخ 24 مهر 1398.
دانشور وثوقی، ف.، 1399. استفاده از رفع نویز موجکی در بررسی روند تراز آب زیرزمینی (مطالعه موردی: دشت اردبیل). هیدروژئولوژی، دوره 5، شماره 1، 61-72.
دانشور وثوقی، ف.، کریمی، ع.، 1397. استفاده از روش‌های پیش‌ پردازش SOM و تبدیل موجک در پیش‌بینی تراز آب زیرزمینی (مطالعه موردی: دشت آذرشهر). هیدروژئولوژی، دوره 3، شماره 1، 15-32.
نیکبخت، ج.، نوری، س.، 1395. پیش‌‌بینی تراز آب زیرزمینی با کمک شبکه‌های موجک-عصبی (مطالعه موردی: دشت مراغه-آذربایجان‌شرقی). هیدروژئولوژی، دوره 1، شماره 1، 29-43.
Azimi, H., Bonakdari, H., Ebtehaj, I., 2019. Gene expression programming-based approach for predicting the roller length of a hydraulic jump on a rough bed. ISH Journal of Hydraulic Engineering, 27: 77-87.
Azimi, H., Shiri, H., 2020. Ice-Seabed interaction analysis in sand using a gene expression programming-based approach. Applied Ocean Research, 98: 102-120.
Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., Sharifi, A., 2015. Gene expression programming to predict the discharge coefficient in rectangular side weirs. Applied Soft Computing, 35: 618-628.
Khaki, M., Yusoff, I., Islami, N., 2015. Simulation of groundwater level through artificial intelligence system. Environmental Earth Sciences, 73(12): 8357-8367.
Makungo, R., Odiyo, J.O., 2017. Estimating groundwater levels using system identification models in Nzhelele and Luvuvhu areas, Limpopo Province, South Africa. Physics and Chemistry of the Earth, Parts A/B/C. 100: 44-50.
Nourani, V., Alami, M.T., Vousoughi, F.D., 2016. Hybrid of SOM-clustering method and wavelet-ANFIS approach to model and infill missing groundwater level data. Journal of Hydrologic Engineering, 21(9): 05016018.
Ebrahimi, H., Rajaee, T., 2017. Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change, 148: 181-191.
Rezaie-balf, M., Naganna, S.R. Ghaemi, A., Deka, P.C., 2017. Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting. Journal of hydrology, 553: 356-373.
Shiri, J., Sadraddini, A.A., Nazemi, A.H. Kisi, O. Landeras, G., Fard, A.F., Marti, P., 2014. Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of hydrology, 508: 1-11.
Yoon, H., Hyun, Y., Ha, K., Lee, K.K., Kim, G.B., 2016. A method to improve the stability and accuracy of ANN-and SVM-based time series models for long-term groundwater level predictions. Computers & Geosciences, 90: 144-155.
Zare, M., Koch, M., 2018. Groundwater level fluctuations simulation and prediction by ANFIS-and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: Application to the Miandarband plain. Journal of Hydro-environment Research, 18: 63-76.
Zhang, N., Xiao, C., Liu, B., Liang, X., 2017. Groundwater depth predictions by GSM, RBF, and ANFIS models: a comparative assessment. Arabian Journal of Geosciences, 10. https://doi.org/10.1007/ s12517-017-2954-8..
Ferreira, C., 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems, 13(2): 87–129.
Adamowski, J., Sun, K., 2010. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology, 390(1–2): 85–91.