Prediction of hydraulic conductivity from the soil grain size data using SICM intelligent model

Document Type : Research paper

Authors

1 Ph.D Candidate, Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 Assistant Professor, Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

3 Associate Professor, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran

10.22034/hydro.2022.13884

Abstract

Permeability is one of the parameters affecting water flow in porous environments such as rock and soil mass and is of special importance in geotechnical studies, e.g., the location of important structures such as urban trains. Accordingly, determination of permeability is one of the main goals in geotechnical studies. Also, it is an important parameter in solving geotechnical problems such as seepage, settlement measurement, stability analysis, etc. Due to fact that direct methods (field and laboratory) of measuring permeability are expensive, highly specialized, time-consuming and unreliable, and due to the nonlinear behavior and heterogeneous and anisotropic conditions in hydrogeological environments which cause inherent uncertainty in the methods of direct measurement of this parameter, various artificial intelligence methods which work more accurately than the above methods  have recently been proposed  to compensate for some of these shortcomings. In this study, two individual artificial intelligence methods including Least-Squares Support Vector Machine (LSSVM) and Wavelet-Artificial Neural Network (WANN) were used on lines 1 and 2 of Tabriz Urban Train to predict hydraulic conductivity based on grain size data; then the results of these two individual models were combined by an Artificial Neural Network (ANN) and improved the results under the name of Supervised Intelligent Committee Machine (SICM). Comparison of test step results of the three models presented in this study showed that all the three models had a relatively good performance in predicting hydraulic conductivity, but SICM model with Root Mean Squared Error (RMSE)= 0.000161 cm/sec and Determination Coefficient (R2)= 0.83 provided better results than the individual models.

Keywords


ترابی، ح.، نصرالهی، ع. ح.، دهقانی، ر.، 1400. ارزیابی مدل شبکه عصبی موجک در پیش‌بینی منابع آب زیرزمینی استان لرستان. هیدروژئولوژی، 6(1)، 1-12.
داداش‌بابا، م.، ندیری، ع. ا.، اصغری مقدم، ا.، برزگری، ق.، 1396. ارزیابی توانایی مدل ترکیبی SOM-FL برای پیش‌بینی هدایت هیدرولیکی در محدوده‌ متروی شهر تبریز. اکوهیدرولوژی، 4(1)، 87-75.
رخ شاد، ا. م.، شهیدی، ع.، 1400. عملکرد شش روش ترکیبی هوشمند در مدل‌سازی کیفی آب زیرزمینی مطالعه موردی: دشت بافق. هیدروژئولوژی، 6(1)، 139-126.
سازمان قطار شهری تبریز، 1383، 1384 و 1388. گزارش‌های مطالعات ژئوتکنیک خطوط 1 و 2 قطار شهری تبریز.
عزیزی، ا.، رجبی، ا.، یعقوبی، ب.، شعبانلو، س.، 1400. تخمین نوسانات تراز آب زیرزمینی توسط مدل بهینه موجک-برنامه‌نویسی بیان ژن. هیدروژئولوژی، 6(1)، 83-68.
عندلیب، غ.، نورانی، و.، منیری‌فر، ح.، شرقی، ا.، 1398. توسعه‌ روش ترکیبی موجک-شبکه‌ عصبی مصنوعی و ماشین بردار پشتیبان برای مدلسازی چند ایستگاه‌های‌ بارش-رواناب با استفاده از ابزارهای خوشه‌بندی و اطلاعات مشترک. رویکردهای نوین در مهندسی عمران، 3(2)، 62-49.
قره‌خانی، م.، ندیری، ع. ا.، اصغری‌مقدم، ا.، صادقی‌اقدم، ف.، 1394. بهینه‌سازی مدل دراستیک با استفاده از ماشین بردار پشتیبان و شبکه‌ عصبی مصنوعی به‌منظور ارزیابی آسیب‌پذیری ذاتی آبخوان دشت اردبیل. اکوهیدرولوژی، 2(3)، 324-311.
نورانی، و.، عندلیب، غ.، 1396. به‌کارگیری مدل‌های ترکیبی موجک-شبکه عصبی مصنوعی و ماشین بردار پشتیبان در پیش‌بینی بار رسوب معلق آجی چای.  رویکردهای نوین در مهندسی عمران، 1(2)، 55-46.
یوسف‌زاده، س.، ندیری، ع. ا.، 1396. برآورد هدایت هیدرولیکی با استفاده از روش SCMAI، مطالعه‌ موردی: آبخوان دشت مراغه- بناب (آذربایجان شرقی). فصلنامه علمی-پژوهشی علوم زمین، 27(105)، 192-183.
یوسف‌زاده، س.، ندیری، ع. ا.، 1400. تخمین هدایت هیدرولیکی با استفاده از مدل‌های هوشمند با به‌کارگیری داده‌های ژئوفیزیکی. زمین‌شناسی کاربردی پیشرفته، 11(2)، 404-382.
Andalib, G., Nourani, V. 2019. Application of Wavelet Denoising and Artificial Intelligence Models for Stream Flow Forecasting. Advance Researches in Civil Engineering, 1(1), 1-8.
Erzin, Y., Gumaste, S. D., Gupta, A. K., Singh, D. N. 2009. Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine-grained soils. Canadian Geotechnical Journal, 46(8), 955-968.‏
Hong, W. C. 2011. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing, 74(12-13), 2096-2107.‏
Kim, T. W., Valdés, J. B. 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering, 8(6), 319-328.‏
Legates, D. R., McCabe, Jr. G. J. 1999. Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation. Water resources research, 35(1), 233-241.
 Mallat, S. G., 1998. A wavelet tour of signal processing. Academic press.‏ San Diego, 557p.
Nadiri, A. A., Chitsazan, N., Tsai, F. T. C., Asghari Moghaddam, A. 2014. Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. Journal of Hydrologic Engineering, 19(3), 520-532.
Nadiri, A. A., Gharekhani, M., Khatibi, R., Asghari Moghaddam, A. 2017a. Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models. Environmental Science and Pollution Research, 24(9), 8562-8577.‏
Nourani, V., Andalib, G. 2015. Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches. Journal of Mountain Science, 12(1), 85-100.
‏ Nourani, V., Hosseini Baghanam, A., Adamowski, J., Kisi, O. 2014. Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. Journal of Hydrology, 514, 358-377.
Nourani, V., Komasi, M., Mano, A. 2009. A multivariate ANN-wavelet approach for rainfall–runoff modeling. Water resources management, 23(14), 2877-2894.
Nowak, W., Cirpka, O. A. 2006. Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data. Water Resources Research, 42(8), W08416, doi: 10.1029/2005 WR004832.
Rogiers, B., Mallants, D., Batelaan, O., Gedeon, M., Huysmans, M., Dassargues, A. 2012. Estimation of hydraulic conductivity and its uncertainty from grain-size data using GLUE and artificial neural networks. Mathematical Geosciences, 44(6), 739-763.‏
Ross, J., Ozbek, M., Pinder, G. F. 2007. Hydraulic conductivity estimation via fuzzy analysis of grain size data. Mathematical geology, 39(8), 765-780.‏
Sedaghat, A., Bayat, H., Safari Sinegani, A. A. 2016. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils. Eurasian Soil Science, 49(3), 347-357.‏
Seifi, A., 2010. Developing of expert system to prediction of daily evapotranspiration by support vector machine and compare results to ANN, ANFIS and experimental method. M.Sc. Thesis, Department of Water Engineering, Tarbiat Modarres University, Tehran, Iran (In Persian).
Sezer, A., Göktepe, A. B., Altun, S. 2010. Adaptive neuro-fuzzy approach for sand permeability estimation. Environmental Engineering & Management Journal (EEMJ), 9(2), 231-238.
Shabri, A., Suhartono. 2012. Streamflow forecasting using least-squares support vector machines. Hydrological Sciences Journal, 57(7), 1275-1293.
Sharghi, E., Nourani, V., Najafi, H., Gokcekus, H. 2019. Conjunction of a newly proposed emotional ANN (EANN) and wavelet transform for suspended sediment load modeling. Water Supply, 19(6), 1726-1734.
Sihag, P. 2018. Prediction of unsaturated hydraulic conductivity using fuzzy logic and artificial neural network. Modeling Earth Systems and Environment, 4(1), 189-198.
Suykens, J. A. K., Vandewalle, J. 1999. Least squares support vector machine classifiers. Neural processing letters, 9(3), 293-300.‏
Suykens, J. A. K., Van, G. T., Brabanter, J. D., De, M. B., Vandewalle, J. P. 2002. Least squares support vector machines. World scientific Publishing, Singapore.
Tayfur, G., Nadiri, A. A., Asghari Moghaddam, A. 2014. Supervised intelligent committee machine method for hydraulic conductivity estimation. Water resources management, 28(4), 1173-1184.
Todd, D. K., Mays, L. W., 2005. Groundwater Hydrology. (Third Edition): John Wiley and Sons. New York, 636 p.
Vapnik, V., Cortes, C. 1995. Support Vector Networks. Machine Learning, 20, 1-25.
Yin, J. 2011. LogP prediction for blocked tripeptides with amino acids descriptors (HMLP) by multiple linear regression and support vector regression. Procedia Environmental Sciences, 8, 173-178.