Groundwater Recharge Estimating in Mashhad-Chenaran Aquifer using water table fluctuations method (MRC algorithm)

Document Type : Research paper

Authors

1 PhD Student of Hydrogeology, Faculty of Earth Sciences, Shahrood University of Technology, Semnan, Iran

2 Associate Professor of Hydrogeology, Faculty of Earth Sciences, Shahrood University of Technology, Semnan, Iran

Abstract

Mashhad-Chenaran Aquifer with an area of about 2527 km2, as the most sustainable resource supplying the drinking water of Mashhad city, is the most important alluvial aquifer in Khorasan Razavi Province. In this study, groundwater recharge has been estimated using the water table fluctuations method and MRC algorithm in a period of 15 years (Sep. 2001 to Sep. 2016) measured in 31 observation wells. Results suggested that recharge in Mashhad-Chenaran Aquifer follows a certain pattern depending on rainfall fluctuations. Seasonal rainfall starts at the end of October and reaches its maximum in April. The trend of increasing groundwater recharge continues until the end of March, and then, with the beginning of the spring season, the amount of recharge is significantly reduced. The most important reason for the decrease in recharge rate during this period is the lag time between the beginning of rainfall and its impact on the groundwater. The highest amount of recharge takes place in January, February and March and the lowest in August and September. During the 15-year period, the lowest and the highest amounts of recharge were 87.2 MCM (12.4% of rainfall) and 221.7 MCM (29% of rainfall) respectively in the 2002-2003 and 2011-2012 water years. During this period, the average annual recharge is about 122 MCM (19% of rainfall). Recharge events less than 5 MCM have the highest frequency and high amounts also have the lowest frequency. Assessing the ratio of recharge to precipitation indicates the correct estimation of recharge by the water level fluctuations method and MRC algorithm.

Keywords


آقانباتی، ع.، 1383. زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معدنی کشور. ایران.
خدری، ا.، کلانتری، ن.، 1398. تخمین آبدهی ویژه آبخوان با استفاده از روش‌های مختلف و برآورد حجم آب قابل استحصال (مطالعه موردی: آبخوان آبرفتی شمال‌شرق گچساران)، مجله هیدروژئولوژی، 4(2(: 92-107.
سازمان زمین‏شناسی و اکتشافات معدنی کشور. نقشه‏های زمین‏شناسی 1:100000 چهارگوش بزنگان، چناران، رادکان، طرقبه، کلات نادری و مشهد.
شرکت آب منطقه‌ای خراسان رضوی، دفتر مطالعات پایه منابع آب، 1386. گزارش توجیهی تمدید ممنوعیت محدوده مشهد-چناران.
شرکت آب منطقه‌ای خراسان رضوی، دفتر مطالعات پایه منابع آب، 1391. گزارش توجیهی تمدید ممنوعیت محدوده مشهد-چناران.
شرکت آب منطقه‌ای خراسان رضوی، دفتر مطالعات پایه منابع آب، 1394. گزارش مطالعات استفاده بهینه از ظرفیت انتقالی پروژه آبرسانی سد دوستی در حوزه شهری مشهد- مرحله اول.
شرکت آب منطقه‌ای خراسان رضوی، دفتر مطالعات پایه منابع آب، 1398. گزارش سیمای آب محدوده مشهد – چناران
شرکت آب منطقه‌ای خراسان رضوی، دفتر مطالعات پایه منابع آب، 1398. گزارش وضعیت منابع آب دشت مشهد.
نخعی، م.، حسن‌نیا، ا.، 1398. تخمین پارامترهای هیدرودینامیکی آبخوان دشت اوان در نقاط نامشخص با استفاده از منطق فازی، مجله هیدروژئولوژی، 4(1): 1-13.
Assefa, K.A., Woodbury, A.D., 2013. Transient, spatially varied groundwater recharge modeling. Water Resour. Res, 49: 4593–4606.
Brassington, F.C., Younger, P.L., 2010. A proposed framework for hydrogeological conceptual modelling. Water Environ. J., 24: 261–273.
Brkić, Ž., Briški, M., Marković, T., 2016. Use of hydrochemistry and isotopes for improving the knowledge of groundwater flow in a semiconfined aquifer system of the Eastern Slavonia (Croatia). Catena, 142:153–165.
Crosbie, R.S., Binning, P., Kalma, J.D., 2005. A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resources Research, 41(1): 1– 9.
Fetter, C.W., 2001. Applied hydrogeology, 4th ed, U.S.A. Prentice Hall Inc., New Jersey.
Jie, Z., van Heyden, J., Bendel, D., Barthel, R., 2011. Combination of soil-water balance models and water-table fluctuation methods for evaluation and improvement of groundwater recharge calculations. Hydrogeol. J., 19: 1487–1502.
Healy, R.W., 2010. Estimating groundwater recharge. Cambridge University Press.
Healy, R.W., Cook, P.G., 2002. Using groundwater levels to estimate recharge. Hydrogeol. J., 10:91–109.
Heppner, C.S., and J.R. Nimmo., 2005. A computer program for predicting recharge with a master recession curve. U.S. Geological Survey Scientific Investigations Report, 2005-5172.
Moon, S.-K., Woo, N.C., Lee, K.S., 2004. Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. J. Hydrol, 292: 198–209.
Prada, S., Cruz, J.V., Figueira, C., 2016. Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal. J. Hydrol, 536: 409-425.
Scanlon, B.R., Healy, R.W., Cook, P.G., 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J., 10:18–39.
Sophocleous, M.A., 1991, Combining the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects: Journal of Hydrology, 124: 229-241.
Tan, X.-C., Wu, J.-W., Cai, S.-Y., Yang, J.-Z., 2013. Characteristics of Groundwater Recharge on the North China Plain. Ground Water, 52: 798–807.
Varni, M., Comas, R., Weinzettel, P., Dietrich, S., 2013. Application of the water table fluctuation method to characterize groundwater recharge in the Pampa plain, Argentina.