Effect of geological formations on the quality and geochemical characteristics of groundwater Shiyan plain aquifer, Kermanshah

Document Type : Research paper

Authors

1 MSc in Geochemistry, Faculty of Science, University of Kurdistan, Kurdistan, Iran

2 Assistant Professor of Hydrogeology, Faculty of Science, University of Kurdistan, Kurdistan, Iran

3 Karst expert and research committee secretary, Kermanshah Regional Water Authority, Kermanshah, Iran

Abstract

The plain of Shiyan, with an area of 207 km2,is one of the most important plains of the Kermanshah province, Iran. However, the framework of hydrogeochemistry of this plain has not been studied yet. This study investigated the hydrogeochemical characteristics of this aquifer through groundwater sampling, geological survey while considering the direction of groundwater flow. Hence, the geological map of the study area was prepared through aerial photographs and field investigation, and then a sampling of groundwater was carried out. After the chemical analysis of the samples, the dominant hydrogeochemical processes in the groundwater system were studied and interpreted according to the geological environment. According to the results, the most abundant process in the aquifer is ion exchange and the groundwater evolves hydrogeochemical as it flows from north-west to east and south-east. The electrical conductivity of the samples taken from the input and output borders of the plain is higher than that of its central zones due to the presence of the Amiran and Kashkan marly formations and maybe the elimination of dolomite from the broke-down zones. The results of the Piper, Stiff, Durov diagrams are consistent and indicate that the dominant water type in this aquifer is the bicarbonate with high magnesium. The Shahbazan Formation has the most influence of terrigenous agents on groundwater quality. Meanwhile, the Amiran and Kashkan formations are responsible for the high concentration of the chemicals found in the groundwater of the east and north of the Shiyan plain. Also, since the plain is entirely under irrigated cultivation and application of chemical fertilizers for increasing agricultural productivity is common in this region, the high level of nitrate in the aquifer should have a human-made origin.

Keywords


درویش­زاده، ع.، 1370. زمین­شناسی ایران، انتشارات نشر دانش امروز وابسته به مؤسسه انتشارات امیرکبیر، چاپ هفتاد، 901 ص.
حسن­زاده، ب.، عباس­نژاد، ا.، 1397. فرآیندهای هیدروژئوشیمیایی مؤثر بر کیفیت منابع آب زیرزمینی بخش میانی دشت نوق (غرب استان کرمان). هیدروژئولوژی، دوره 3، شماره 2، 46-58.
شرکت آب منطقه‌ای کرمانشاه.، 1390، پروژه آماربرداری از منابع آب 12 محدوده مطالعاتی استان کرمانشاه، گزارش نهایی آماربرداری از منابع آب محدوده مطالعاتی حسن‌آباد قلعه‌شیان. جلد 7، 62 ص.
کریمی، ث.، محمدی، ض.، سامانی، ن.، 1396. بررسی خصوصیات هیدروشیمیایی آب زیرزمینی و روند تکامل شوری آن در دشت سمنان. هیدروژئولوژی، دوره 2، شماره 1، 1-19.
هادیپور هفشجانی، ز.، ناصری، ح.، علیجانی، ف.، 1397. فرآیندهای هیدروژئوشیمی آبخوان کوهدشت. هیدروژئولوژی، دوره 3، شماره 1، 32-46.
Aghazadeh, N., Mogaddam, A.A., 2011. Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environ Monit Assess, 176(1):183–195.
Brkić, Ž., Briški, M., Marković, T., 2016. Use of hydrochemistry and isotopes for improving the knowledge of groundwater flow in a semiconfined aquifer system of the Eastern Slavonia (Croatia). Catena, 142, 153-165.
Chkirbene, A., Tsujimura, M., Charef, A., Tanaka, T., 2009. Hydro-geochemical evolution of groundwater in an alluvial aquifer: Case of Kurokawa aquifer, Tochigi prefecture, Japan. Desalination, 246(1-3): 485-495.
Gholami, A., Shahinzadeh, N., Papan, P., 2013. Hydrogeochemical parameters for assessment of groundwater quality in loor plain, khouzestan, Iran. Tech J Eng Appl Sci, 3(23):3458-3461.
Haritash, A.K., Mathur, K., Singh, P., Singh S.K., 2017. Hydrochemical characterization and suitability assessment of groundwater in Baga–Calangute stretch of Goa, India, Environ Earth Sci.76 (9), 341.
Hounslow, A.W., 1995c. Water Quality Data: Analysis and Interpretation. CRC Press, 416 p.
Hussein, M.T., 2004. Hydrochemical evaluation of groundwater in the Blue Nile Basin, eastern Sudan, using conventional and multivariate techniques. Hydrogeology Journal, 12(2): 144-158.
James, G.A., Wynd, J.D., 1965. Stratigraphic nomenclature of Iranian oil Consotium Agreement area. Ameraican Assosiation of Petroleum  Geologists Bul., 49(12): 2182-2245.
Mapoma, H.W.T., Xie, X., Liu, Y., Zhu, Y., Kawaye, F.P., Kayira, T.M., 2017. Hydrochemistry and quality of groundwater in alluvial aquifer of Karonga, Malawi. Environ Earth Sci, 76(9), 335.
Nematollahi, M.J., Ebrahimi, P., Ebrahimi, M., 2016. Evaluating Hydrogeochemical Processes Regulating Groundwater Quality in an Unconfined Aquifer. Environmental Processes, 3(4): 1021-1043.
Nematollahi, M.J., Ebrahimi, P., Razmara, M., Ghasemi, A., 2016. Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environmental monitoring and assessment, 188(1), 2.
Nosrati, K., Eeckhaut, M.V.D., 2011. Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran. Environmental Earth Sciences, 65: 331–344.
Norouzi, H., Moghaddam, A.A. 2021. Assessment of groundwater vulnerability using genetic algorithm and random forest methods (case study: Miandoab plain, NW of Iran. Journal of Environmental Science and Pollution Research. 28: 39598–39613
Stocklin, J., 1968. Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7): 1229-1258.
Taghizadeh Mehrjardi, R., Zareian Jahromi, M., Mahmodi, S., Heidari, A., 2008. Spatial distribution of groundwater quality with geostatistics (Case Study: Yazd-Ardakan Plain). World Appl. Sci. J. 4(1): 9-17.
Yang, Q., Li, Z., Ma, H., Wang, L., Martín, J.D., 2016. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China. Environmental Pollution, 218, 879-888.