سعیدیرضوی، ب.، 1399. بررسی آسیبپذیری آب زیرزمینی دشت گلپایگان با استفاده از بهینهسازی روش دراستیک. هیدروژئولوژی، 5(2): 61-74.
میرعباسی نجفآبادی، ر.، ستاری م.ت.، برقیولینجق، و.، 1395. شبیهسازی و مدیریت بهرهبرداری از آب زیرزمینی دشت عجبشیر. هیدروژئولوژی، 1(1): 57-75.
ندیری، ع.، صدقی، ز.، 1398. ارزیابی آسیبپذیری آبخوانهای چندگانه با استفاده از چهارچوبهای عملی DRASTIC ، SINTACS. هیدروژئولوژی، 4(2): 171-188.
Allouche, N., Maanan, M., Gontara, M., Rollo, N., Jmal, I., Bouri, S., 2017. A global risk approach to assessing groundwater vulnerability. Environmental Modelling and Software. Elsevier Ltd, 88: 168-182.
Antonakos, A.K., Lambrakis, N.J., 2007. Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece. Journal of Hydrology, 333(2-4) :288-304.
Ataie-Ashtiani, B., Ketabchi, H., Rajabi, M.M., 2013. Optimal management of a freshwater lens in a small island using surrogate models and evolutionary algorithms. Journal of Hydrologic Engineering, 19: 339-354.
Chachadi, A.G., Lobo-Ferreira, J.P., 2003. Assessing the impact of sea-level rise on salt water intrusion in coastal aquifers using GALDIT model. APRH/CEAS, Seminário Sobre Águas Subterrâneas, Lisboa, Fev, (1):1–13
Civita, V.M., 2010. The Combined Approach When Assessing and Mapping Groundwater Vulnerability to Contamination. Journal of Water Resource and Protection, 02(01):14-28.
GILC, Engineers, 2011. Investigation of updating the water resources of the second-grade watershed in the rivers between the Sefidrud and Heraz and the rivers between Haraz and Gharasu: Report of the Lahijan-Chaboksar study area.
Ketabchi, H., Ataie-Ashtiani, B., 2015. Review: Coastal groundwater optimization - advances, challenges, and practical solutions. Hydrogeology Journal, 23(6): 1129-1154.
Luoma, S., Okkonen, J., Korkka-Niemi, K., 2016. Comparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland. Hydrogeology Journal, 25(1): 203-222.
Revelle, R., 1941. Criteria for recognition of the sea water in ground‐waters. Eos, Transactions American Geophysical Union, 22: 593-597.
Ribiro, L., Pindo, J.C., Dominguez-Granda, L., 2017. Assessment of groundwater vulnerability in the Daule aquifer, Ecuador, using the susceptibility index method. Science of The Total Environment, 574: 1674-1683.
Margat, 1970. Cartographie de la vulnerabilite a la pollution des nappes d’eau sout erraine. Bulet in BRGM 2nd Series, 3(4):13-22.
Norouzi, H., Moghaddam, A.A., Nadiri, A.A. 2016. Determining vulnerable areas of Malekan Plain Aquifer for Nitrate, Using Random Forest method, Journal of environmental studies. 41(4): 923-942.
Stempvoort, D., Van, Ewert, L., Wassenaar, L., 2010. Aquifer Vulnerability Index: a GIS-Compatible Method for Groundwater Vulnerability Mapping. Canadian Water Resources Journal, 18(1): 25-37
Trabelsi, N., Triki, I., Hentati, I., Zairi, M., 2016. Aquifer vulnerability and seawater intrusion risk using GALDIT, GQI SWI and GIS: case of a coastal aquifer in Tunisia. Environmental Earth Sciences. Springer Berlin Heidelberg, 75(8): 1-19.
Werner, A.D., Ward, J.D., Morgan, L.K., Simmons, C.T., Robinson, N.I., Teubner, M.D., 2012. Vulnerability indicators of sea water intrusion. Ground Water, 50(1): 48-58.