Performance Six Intelligent Combined Methods in Groundwater quality modeling, Case study: Bafgh Plain

Document Type : Research paper

Authors

1 PhD student, Department of Water Science and Engineering, Faculty of Agriculture, University of Birjand, South Khorasan, Iran

2 Associate Professor, Department of Water Science and Engineering, University of Birjand, South Khorasan, Iran

Abstract

Assessment and controlling groundwater quality have an important role in planning and developing water resources. Therefore, the use of an efficient method can greatly increase accuracy and reduce costs in this field. In this study, 6 optimization algorithms Consist of Particle swarm optimization (PSO), Genetic algorithm (GA), Imperialist competitive algorithm (ICA), Fireflies algorithm(FA), Cultural algorithm(CA) and covariance matrix adaptation evolution strategy- Evolution strategies (CMA-ES) were used to train and optimize the parameters of the neural-fuzzy inference system model (ANFIS) to model the groundwater quality of Bafgh plain in Yazd province. At first, to select the best combination of input for an estimate of the electrical conductivity (EC), sodium adsorption (SAR) and total hardness (TH), Pearson and Spearman's methods were used to analyze the sensitivity and correlation of other parameters. then qualitative modeling is done with hybrid methods and the performance of the models was measured by correlation coefficients (R2), root mean square error (RMSE), and Nash-Sutcliffe Efficiency (NSE). The results showed that all six combined methods showed a very good performance in modeling groundwater parameters. Also, the ANFIS-FA model was one of the best models in all three modeling parts. So that the value of R2, RMSE and NSE for the test part in TH was, 0.99, 0.41, 0.99, for SAR, 0.98, 1.11,0.95 and for EC 0.99, 305.7 and 0.99. Other methods have also succeeded in modeling and predicting the desired parameters with proper precision. According to the accuracy of the calculations, these methods are suitable alternatives for the prediction of groundwater quality variables.

Keywords


آتشپز گرگری، ا.، 1387. توسعه الگوریتم بهینه‌سازی اجتماعی و بررسی کارایی آن. پایان‌نامه کارشناسی ارشد، دانشکده مهندسی برق، دانشگاه تهران.
اقدر، ح. محمدیاری، ف.، ۱۳۹۴. مدل­سازی پارامتر کیفی TH در آب زیرزمینی با استفاده از شبکه عصبی مصنوعی (مطالعه موردی: دشت مهران و دهلران). سومین همایش سراسری محیط زیست، انرژی و پدافند زیستی، تهران، موسسه آموزش عالی مهر اروند، گروه ترویجی دوستداران محیط زیست.
جانی، ر.، 1398. مدل­سازی خوشه‌ای تراز آب زیرزمینی دشت تبریز با استفاده از مدل آریما. هیدروژئولوژی، جلد 4، شماره 2، 74-91.
کرد، م.، اصغری مقدم، ا.، نخعی، م.، 1398. مدل­سازی عددی آبخوان دشت اردبیل و مدیریت آن با استفاده از بهینه­سازی برداشت آب زیرزمینی. هیدروژئولوژی، جلد 4، شماره 1، 153-167.
میرسنجری، م. م.، محمدیاری، ف.، بصیری، ر. حمیدی پور، ف.، 1396. مدل­سازی پارامترهای کیفی EC، SAR و TDS در آب زیرزمینی با استفاده از شبکه عصبی مصنوعی (مطالعه موردی: دشت مهران و دهلران). انسان و محیط زیست، جلد 15، شماره 3، 1-12.
نوری، ح.، ایلدرومی، ع.، سپهری، م. آرتیمانی، م.م.، 1397. مقایسه سه روش اصلی هوش مصنوعی در برآورد دبی سیلاب رودخانه یلفان. جغرافیا و برنامه­ریزی محیطی. جلد 29، شماره 4، 35-50.
Abu-Khalaf, N., Khayat, S., Natsheh, B., 2013. Multivariate data analysis to identify the groundwater pollution sources in Tulkarm area/Palestine. Sci Technol, 3(4): 99–104.
Alizamir, M., Sobhanardakani, S., 2017. Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm. Environ Health Eng Manag J, 4: 225–231.
Azad, A., Karami, H., Farzin, S., Saeedian, A., Kashi, H., Sayyahi F., 2018. Prediction of water quality parameters using ANFIS optimized by intelligence algorithms (case study: Gorganrood River). KSCE J Civ Eng, 22(7): 2206–2213.
Delir, S., Foroughi-Asl, A., Talatahari, S., 2019. A hybrid charged system search-firefly algoritm for optimization of water distribution networks. International Journal of Optimization in Civil Engineering, 9(2): 273-290.
Emamgholizadeh, S., Kashi, H., Marofpoor, I., Zalaghi, E., 2013. Prediction of water quality parameters of Karoon river (Iran) by artificial intelligence-based models. Int J Environ Sci Technol, 11: 645–656.
Hosseini-Moghari, S.M., Morovati, R., Moghadas, M., Araghinejad S., 2015. Optimum operation of reservoir using two evolutionary algorithms: imperialist competitive algorithm (ICA) and cuckoo optimization algorithm (COA). Water Resour Management, 29(10): 3749-3769.
Jalalkamali, A., 2015. Using of hybrid fuzzy models to predict spatiotemporal groundwater quality parameters. Earth Science Informatics, 8(4): 885–894.
Karterakis, S.M., Karatzas, G.P., Nikolos, I.K., Papadopoulou, M.P., 2007. Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria. J Hydrol, 342: 270–282.
Kazemzadeh-Parsi, M.J., Daneshmand, F., Ahmadfard, M.A., Adamowski, J., Martel, R., 2015. Optimal groundwater remediation design of pump and treat systems via a simulation–optimization approach and firefly algorithm. Engineering Optimization, 47(1): pp. 1–17.
Khadr, M. and Elshemy, M., 2016. Data-driven modeling for water quality prediction case study: The drains system associated with Manzala Lake, Egypt. Ain Shams Engineering Journal, DOI: 10.1016/j.asej.2016.08.004
Kisi, O., Keshavarzi, A., Shiri, J., Zounemat-Kermani, M., Omran E-SE., 2017. Groundwater quality modeling using neuro-particle swarm optimization and neuro-differential evolution techniques. Hydrol Res, 48(6): 1508–1519.
Liu, W.C., Chen, W.B., Kimura, N., 2009. Impact of phosphorus load reduction on water quality in a stratified reservoir eutrophication modeling study. Environmental Monitoring and Assessment, 159(1–4): 393–406.
Luo, D., Guo, Q., Wang, X., 2003. Simulation and prediction of underground water dynamics based on RBF neural network. Acta Geoscientia Sinica, 24(5): 475–478.
Mousavi, S,F. and Amiri, M.J., 2012. Modelling nitrate concentration of groundwater using adaptive neural-based fuzzy inference system. Soil Water Resour, 7(2): 73–83.
Orouji, H., Bozorg Haddad, O., Fallah-Mehdipour, E., and  Mariño M.A., 2013. Modeling of water quality parameters using data-driven models. J Environ Eng, 139(7): 947–957.
Smaoui, H., Zouhri, L., Kaidi, S., Carlier E., 2018. Combination of FEM and CMA-ES algorithm for transmissivity identification in aquifer systems. Hydrol Process, 32(2): 264–277.
Sudheer, C., Mathur, S., 2012. Particle swarm optimization trained neural network for aquifer parameter estimation KSCE. J Civil Eng, 16: 298-307.
Tabari, M.M.R., 2016. Prediction of river runoff using fuzzy theory and direct search optimization algorithm coupled model. Arabian Journal for Science and Engineering, 41(10): 4039–4051.
Tien Bui, D., Khosravi, K., Li, S., Shahabi, H., Panahi, M., Singh, V., Chapi, K., Shirzadi, A., Panahi, S., Chen, W., Bin Ahmad, B., 2018. New Hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling. Water, 10(9): 1210.
Yang, X.S., Sadat Hosseini, S.S., and Gandomi, A.H., 2012. Firefly Algorithm for Solving Non Convex Economic Dispatch Problems with Valve Loading Effect. Applied Soft Computing, 12: 1180–1186.
Zadeh. L.A., 1965. Fuzzy sets. Inf Control, 8(3):338–353.
Zhou, C.H., Gao, L., Gao, H., and Chuanyong, P., 2006. Pattern classification and prediction of water quality by neural network with particle swarm optimization. Proceeding of the 6th world Congress on Control and utomation, Jun, Dalian, China, pp. 21-23.