Evaluation of Hashtgerd aquifer groundwater quality using fuzzy method

Document Type : Research paper

Authors

1 Academic Faculty member, Department of Water Engineering and Sciences, The School of Agriculture, Water, Food, & Functional Foods, Islamic Azad University, Tehran Science and Research Branch, Tehran, Iran.

2 Master of Science in Water Resources Engineering, Department of Water Engineering and Sciences, The School of Agriculture, Water, Food, & Functional Foods, Islamic Azad University, Tehran Science and Research Branch, Tehran, Iran.

3 Associate Professor, Department of New Energies and Environment, Faculty of Modern Sciences and Technologies, University of Tehran, Tehran, Iran.

Abstract

Classification and identification of groundwater quality is one of the important goals in water resources management. In recent years, the ability of methods based on fuzzy logic to account for uncertainties in various environmental issues has been proven. The purpose of this study is to apply a method based on fuzzy logic instead of the definitive decision method about drinking water quality. In this method, membership functions of qualitative parameters based on fuzzy rules were introduced and then the fuzzy logic toolbox of MATLAB software was used. In the present study, a new method based on Mamdani fuzzy inference system was used to evaluate the groundwater quality in Hashtgerd aquifer. In this method, out of 10 groundwater quality parameters including total soluble solids, total alkalinity, chlorine, sulfate, pH, total hardness, calcium, magnesium, fluoride and nitrate due to the importance of determining water quality in terms of drinking, in 28 groundwater samples used. These parameters, based on their importance in water quality in terms of drinking, were divided into three groups of desirable, acceptable and unacceptable. Total soluble solids, total alkalinity, chlorine and sulfate were in the first group. The second group also included pH, total hardness, calcium and magnesium. Fluoride and nitrate were studied in the third group due to their importance in determining water quality in terms of drinking, along with the outputs of the first and second groups. These groups were then combined according to fuzzy if-then rules and the final water quality was determined. The results of the study showed that 18 of these samples with a confidence level between 34 to 100% in the desired category, 7 samples with a confidence level between 45 to 95% in the acceptable group and 3 samples with a confidence level between 76 to 92% in the unfavorable range they are for drinking.

Keywords

Main Subjects


جمعدار، م.، سرائی تبریزی، م.، یوسفی، ح.، 1399. پتانسیل‌یابی میزان کارستی­شدن چشمه‌ها از منظر هیدروژئوشیمیایی در محدوده مطالعاتی هشتگرد. مجله هیدروژئولوژی، 5 (2): 113-126.
سرائی تبریزی، م.، جلالی، م.، یوسفی سهرابی، ح.، 1400. پیش‌بینی جریان ورودی با استفاده از تحلیل مدل‌های سری‌ زمانی (مطالعه موردی: سد جامیشان). مجله هیدروژئولوژی، 6 (1): 164-153.
کرد، م.، اصغری مقدم، ا.، نخعی، م.، 1398. مدلسازی عددی آبخوان دشت اردبیل و مدیریت آن با استفاده از بهینه‌سازی برداشت آب زیرزمینی. مجله هیدروژئولوژی، 4 (1): 153-167.
موسسه استاندارد و تحقیقات صنعتی ایران.، 1376. ویژگی‌های آب آشامیدنی استاندارد. کمیسیون استاندارد ویژگی‌های آب آشامیدنی، 5 (1053): 895.
هاشمی، ا.، موسوی، ف.، طاهری، م.، قرهچاهی، ع.، 1389. ارزیابی کیفیت آب زیرزمینی 9 شهر استان اصفهان برای مصارف شرب با استفاده از سیستم استنتاج فازی. فصلنامه تحقیقات منابع آب ایران، 3 (6): 34-25.
Akgun, A., Sezer, E.A., Nefeslioglu, H.A., Gokceoglu, C., Pradhan, B., 2019. An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computers & Geosciences, 38(1): 23-24.
Bakhtyar, R., Ghaheri, A., Yeganeh-Bakhtiary, A., Jeng, D., 2011. Cross-shore sediment transport estimation using fuzzy inference system in the swash zone. Journal of the Franklin Institue, 348: 2005-2025.
Chang, N.B., Chen, H.W., Ning, S.K., 2001. Identification of river water quality using the Fuzzy Synthetic Evaluation approach, Journal of Environmental Management, 63: 293-305.
Dahiya, S., Singh, B., Gaur, S., Garg, V.K., Kushwaha, H.S., 2007. Analysis of groundwater quality using fuzzy synthetic evaluation. Journal of Hazardous Materials, 147: 938-946.
Firat, M., Erkan.Turan, M., Yurdusev, M.A., 2018. Comparative analysis of fuzzy inference systems for water consumption time series prediction. Journal of Hydrology, 374: 235-241.
Ip, W.C., Hu, B.Q., Wong, H., Xia, J., 2009. Applications of grey relational method to river environment quality evaluation in China. Journal of Hydrology, 379: 284-290.
Katambara, Z., Ndiritu, J., 2009. A fuzzy inference system for modeling streamflow: Case of Letaba River, South Africa. Physics and Chemistry of the Earth, 34: 688-700.
Kwok-wing C. A., 2006. review on integration of artificial intelligence into water quality modelling. Marine Pollution Bulletin, 52: 726-733.
Mahapatra, S.S., Nanda, S.K., Panigrahy, B.K., 2011. A Cascaded Fuzzy Inference System for Indian river water quality prediction. Advances in Engineering Software, 42: 787-796.
Ocampo-Duque, W., Ferre-Huguet, N., Domingo, J.L., Schuhmacher, M., 2006. Assessing water quality in rivers with fuzzy inference systems: A case study. Environment International, 32: 733-742.
Sowlat M.H., 2019. A novel, fuzzy-based air quality index (FAQI) for air quality assessment. AtmosphericEnvironment, (45): 2050-2059.
Singh, P.K., Basant, A., Malik, A., Jain, G., 2009. Artificial neural network modeling of the river water quality-A case study. Ecological Modelling, 220: 888-895.
Srebotnjak, T., Carr, G., De Sherbinin, A., Rickwood, C., 2011. A global Water Quality Index and hot-deck imputation of missing data. Ecological Indicators.
Silvert, W., Fuzzy indices of environmental conditions. Ecological Modelling. 2011; (130): 111-119.10. Sowlat MH. A novel, fuzzy-based air quality index (FAQI) for air quality assessment. Atmospheric Environment, (45): 2050-2059.
Tosun, M., Dincer, K., Baskaya, S., 2011. Rule-based Mamdani-type fuzzy modeling of thermal performance of multi-layer precast concrete panels used in residential buildings in Turkey, 38: 5553-5560.
Venkat Kumar, N., Mathew, S., Swaminathan, G., 2009. Fuzzy Information Processing for Assessment of Groundwater Quality. International journal of soft Computing, 4(1): 1-9.