مطیعی، ه.، 1372. زمینشناسی ایران- چینهشناسی زاگرس. سازمان زمینشناسی کشور. 536 ص.
ناصری، ح ر.، محمدزاده، ح.، سلامی، ه.، 1392. بررسی منشاء سولفات در تعدادی از چشمههای گوگردی زاگرس چین خورده با استفاده ایزوتوپ سولفور(34S). نخستین همایش ملی کاربرد ایزوتوپ های پایدار، دانشگاه فردوسی مشهد.
Avsar, O., Kurtulus¸ B., Gürsu, S., GencaliogluKus¸ G., Kacaroglu, F., 2016. Geochemical and isotopic characteristics of structurally controlled geothermal and mineral waters of Mugla (SW Turkey). Geothermics journal. 64: 249–265.
Chandrasekharam, D. and Bundschuh, J., 2008. Low-Enthalpy Geothermal Resources for Power Generation. CRC Press LLC, Taylor & Francis Group.
Clark, I. D., 2015. Groundwater Geochemistry and Isotopes. Taylor & Francis Group, LLC, 456 p.
Clark, I. D., and Fritz, P., 1997. Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, FL, 328 p.
Drever, J.I., 1982. The Geochemistry of Natural Waters. Prentice-Hall, Inc
Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim et Cosmochim. Acta. 52: 2749–2765.
Giggenbach, W.F., Minissale, A.A., Scandiffio, G., 1988. Isotopic and chemical assessment of geothermal potential of the Colli Albani area, Latium region, Italy. Appl. Geochem. 3: 475–486.
Norouzi, H., Asghari Moghaddam, A. 2020. Groundwater quality assessment using random forest method based on groundwater quality indices (case study: Miandoab plain aquifer, NW of Iran). Arabian Journal of Geosciences. 13:912.
Goldscheider, N., Madl-Szonyi, J., Eross A, Schille, 2010. Review: Thermal water resources in carbonate rock aquifers. Hydrogeology Journal 18: 1303-1318.
Hounslow, A.W., 1995. Water Quality Data. Analysis and Interpretation. CRC Press, Boca Raton, Florida, USA 397pp.
Karimi, H. and Moore, F. 2008. The source and heating mechanism for the Ahram, Mirahmad and Garu thermal springs, Zagros Mountains, Iran. Geothermics journal. 37: 442-450.
Karimi, S., Mohammadi, Z., Nozar Samani, N., 2017. Geothermometry and circulation depth of groundwater in Semnan thermal springs, Northern Iran. Environ Earth Sci. 76:659 – 667.
Kempe, A.L.W., Thode, H.G., 1968. The mechanism of bacterial reduction of sulfate and sulfite from isotope fractionation studies. Geochim. Cosmochim. Acta 32: 71–91.
Kompani-Zare, M., Moore, F., 2001. Chemical thermometry and origin of the Dalaki mineral springs, Boshehr Province, Iran. J. Hydrol. (NZ) 40: 189–204.
Langmuir, D., 1997. Aqueous Environmental Geochemistry. Prentice-Hall, 600P
Machel, H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sedimentary Geology. 140: 143-175
Mahbobipour, H., Kamali, M. R., Solgi, A., 2016. Organic geochemistry and petroleum potential of Early Cretaceous Garau Formation in central part of Lurestan zone, northwest of Zagros, Iran. Marine and Petroleum Geology
Mashhadi, Z. S., Rabbani, A. R., Kamali, M. R., Mirshahani, M., Khajehzadeh, A., 2015. Burial and thermal maturity modeling of the Middle Cretaceous–Early Miocene petroleum system, Iranian sector of the Persian Gulf. Petroleum Science. 12(3): 367–390
Mazor, E., 2003. Chemical and Isotopic Groundwater Hydrology. CRC Press. 460 pp
Mohammadi, Z., Bagheri, R., Jahanshahi, R., 2010. Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iranˮ. Geothermics. 39: 242-249
Mohammadzadeh, H. and Kazemi, M. 2015. Geothermal reservoir characteristics (T and depth) of Ayub peighambar and Shafa hot springs using geothermometers and environmental 2H and 18O isotopes, International symposium on isotope hydrology, 11-15 May 2015 Vienna,Austria
Pasvanoğlu, S., Çelik, M., 2018. A conceptual model for groundwater flow and geochemical evolution of thermal fluids at the Kızılcahamam geothermal area, Galatian volcanic Province. Geothermics journal. 71: 845-856.
Rafighdoust, Y., Eckstein, Y., Moussavi Harami, R., Mahmudy Gharaie, M. H., Griffith, E., Mahboubi, A., 2015. Isotopic analysis, hydrogeochemistry and geothermometry of Tang-Bijar oilfieldfield springs, Zagros region, Iran. Geothermics journal. 55: 696-704.
Richter, B., Kreitler, C., Bledsoe, W., 1993. Geochemical Techniques for Identification Source of Groundwater Salinization. CRC Press, New York, NY, USA, 272 pp.
Richter B., Kreitler C., 1993. Geochemical Techniques for identifying sources of ground-water salinization. CRN Press Inc, Florida
Richter, B., Kreitler C., 1991. Identification of sources of ground-water salinization using geochemical techniques. The University of Texas at Austin, Bureau of Economic Geology
Rittenhouse, G., 1967. Bromine in oilfield-field waters and its use in determining possibilities of origin of these waters. Am Assoc Petr Geol Bull. 51: 2430–2440.
Tian, J., Pang, Z., Guo, Q., Wang, Y., Li, J., Huang, T., Kong, Y., 2018. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax. Geothermics journal. 74: 321-332.
Wang, L., Wang, Y., Xu, C., An, Z., Wang, S., 2011. Analysis and evaluation of the source of heavy metals in water of the River Changjiang. Environmental Monitoring and Assessment. 173(1-4): 301-313.
Whittemore, D.O., 1995. Geochemical differentiation of oilfield and gas brine from other saltwater sources contaminating water resources: case studies from Kansas and Oklahoma. Environ. Geosci. 2: 15-31.
Zega, M., Rozic, B., Gabersek, M., 2015. Mineralogical, hydrogeochemical and isotopic characteristics of the Zveplenicasulphide karstic spring (Trebusa Valley, NW Slovenia). Environmental Earth Sciences.