Adamowski J., Chan H.F. (2011). A Wavelet neural network conjunction model for groundwater level forecasting, J. Hydrol., 407, 28-40.
Almasri A., Locking H. and Shukar G. (2008). Testing for climate warming in Sweden during 1850–1999 using wavelet analysis. J. Appl. Stat., 35, 431–443.
Brocque A., Kath J. and Smith K. (2018). Chronic groundwater decline: A multi-decadal analysis of groundwater trends under extreme climate cycles. 561, 976-986.
Daneshvar Vousoughi F., Dinpashoh Y. and Alami M.T. (2011). The Effect of Drought on Groundwater Alignment in Two Recent Decades (Case Study: Ardebil Plain). J. Water and Soil Sci., 4(21), 165-179 [In Persian].
Donoho, D.H. 1995. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41 (3): 613–617.
Hartigan, J.A. and Wong, M.A. 1979. Algorithm AS 139: A k-means clustering algorithm. Applied Statistics, 28:8–100.
Kahya E., and Kalayci S. (2004). Trend analysis of streamflow in Turkey, J. Hydrol., 289, 128-144.
Kendall, M.G. (1975). Rank Correlation Measures. Charles Griffin Inc. London.
Kohonen, T. The Self organizing map, Neurocomputing., 1998. 21, 1-6.
Kumar S., Merwade V., Kam J. and Thurner K. (2009). Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol., 374: 171-183.
Lee J.Y., Yi M.J., Moon S.H., Cho M., Won J.H., Ahn K.H. and Lee J.M. (2007). Causes of the changes in groundwater levels at Daegu, Korea: the effect of subway excavations. Bull Eng. Geol. Environ., 66, 251-258.
Mann, H.B. 1945. Non-parametric test against trend. Econometrica, 13: 245-259.
Nalley D., Adamowski J. and Khalil B. (2012). Using discrete wavelet transforms to analyze trends instream flow and precipitation in Quebec and Ontario (1954–2008). J. Hydrol., 475, 204-228.
Nourani V., Alami M. T. and Aminfar M. H. (2009). A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intel., 22, 466–472.
Nourani V., Alami, M. T and Daneshvar Vousoughi, F. (2015). Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling, J. Hydrol., 524, 255–269.
Panda K., Mishra A., Jena S.K., James B.K. and Kumar A. (2007). The influence of drought and anthropogenic effects on groundwater levels in Orissa, India. J. Hydrol. Process., 343, 140-153.
Partal T. and Kahya E. 2006. Trend analysis in Turkish precipitation data. Hydrol. Process., 20: 2011-2026.
Paul S., Datta D. and Sarkar P. K. (2011). Determination of trend of temporal trend of annual precipitation by stationary wavelet components in Northern part of Maharashtra. J. Environ. Sci., 2, 1–11.
Shahid, S., and Hazarika, M.K. (2009). Groundwater drought in the northwestern districts ofBangladesh. Water Resour. Manage., 24: 1989-2006.
Tan C., Huang B., Liu K., Chen H., Liu F., Qiu J., and Yang J. (2017). Using the wavelet transform to detect temporal variations in hydrological processes in the Pearl River, China. Quat. Int., 440, Part B, 10, 52-63
Wang H., Zhang M., Zhu H., Dang X., Yang Z. and Yin L. (2012). Hydro-climatic trends in the last 50 years in the lower reach of the Shiyang River Basin, NW China. Catena 95, 33–41.
Xu K., Milliman J.D., and Xu H. (2010). Temporal trend of precipitation and runoff in major Chinese Riverssince 1951. Global. Planet.Change., 73, 219-232.
Yazdani, MR. Morteza kh.Q. (2010). Hydrological Drought Analysis (Groundwater) in Mobarakeh Lanjan Region. 2ed Nat. Conf. on Drought Effects and Management Tools, Esfahan, Iran [In Persian].
Zahmatkesh Q. AlaviPanah K. Zehtabian Q.R. (2002). Study of Oscillations of shallow Underground Watersheds of Playa Parsian Case Study Semnan, J. Desert, 2, 15-30 [In Persian].
Zhang W., Yan Y., Zeng J., Li L., Dong X., and Cai H. (2009). Temporal and spatialvariability of annual extreme water level in the Pearl River Delta region, China. Global. Planet. Change., 69, 35-47.