@article { author = {Moghimi, Homayoun and ravash, fartash and Keshavarz Bakhshayesh, Mohammad}, title = {Using of Water Pressure Test Results to Calculate of Seepage through Grouting Curtain of Seymareh Dam at Ilam Province of Iran}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {1-15}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.10600}, abstract = {Introduction Since Maurice Lugeon (1933) invented the water pressure test (Lugeon), it has been recognized as the best method to evaluate hydraulic conductivity (permeability) of rock masses. One of the main advantages of this test is its simplicity, easy measurement of required parameters and simplicity of interpretation.  In this research water pressure test (WPT) has been used to evaluate of seepage from grout curtain at Seymareh dam. The dam is constructed on Seymareh River at Ilam Province. Dam site is located 40 km northwest of DarehShahr and 95 km southeast of Ilam. The geographical coordinates of the Seymareh dam are located at 47° 12' 7" East and latitude 33° 17' 32" North. The Seymareh dam Power Plant site is located 1.5 km from the Dam site (Fig 1). The study area is geologically located in the southwestern part of the Zagros fold and consists of relatively high mountains with a general northwest – southeast trend. The low-lying straits that the Seymareh River created during its erosion are one of the morphological features of these areas. The rock masses of the dam and power plant and all structures associated with the Seymareh Dam belong to the Asmari Formation. Three units of this Formation can be identified as follows: Upper Asmari: This unit is outcropped in the upper parts of the Ravandi anticline and inlet of the valley. The thickness of this unit is 50 to 55 meters. Middle Asmari; In general, the middle Asmari unit is about 220 meters thick, with small karstic effects evident. Lower Asmari: This unit has a slight outcrop downstream of the diversion tunnel outlet and near the Ravandi anticline. This unit is about 12 meters thick from the riverbed (Fig.2).     Fig.1: Location of Study Area in Ilam Province   Fig.2: Geological map of Seymareh Dam site Above the Asmari Formation, the Gachsaran Formation (Miocene-Pliocene) is exposed. These sediments are composed of siltstone and red and green marl between thin gypsum layers and fossilized limestones.Gypsum was replaced by anhydrite at certain times and thick salt layers were sometimes found. The recent or quaternary sediments in the study area include coarse-grained alluvial sediments, fine-grained lake sediments, debris sediments, and old alluvial sediments of the Seymareh River that formed in varying thicknesses along several river paths (Fig. 2). Materials and Methods Over the past few decades, there has been a great deal of effort to develop methods of calculating seepage in rock masses, most of which are based on calculating water flows at fully open joints using hydraulic laws and then comparing them with performance measurements in mathematical models. From the point of view of rock mechanics, the seepage in the rock can be estimated based on calculations of theoretical methods whose accuracy is confirmed in model experiments. By definition, one Lugeon is equivalent to one liter of water per minute for one minute at one meter of borehole under 10 atmospheres pressure. The definition of Lugeon is shown in the following formula (Eq. 1):                                                                               (1) By converting units and simplifying the face and denominator we will deduct (Eq.2):                            (2)                                         If the right-hand side of Equation 2 is multiplied by the fluid dynamic viscosity, then the intrinsic permeability of the environment is obtained for the numerical value of one Lugeon value (Eq. 3) (water dynamic viscosity of approximately 0.01 (dyne.s. cm2-1) , N is Lugeon value).                                                                                         (3) There is a relationship between hydraulic conductivity (k) and intrinsic permeability ( ) (Eq. 4):                                                                                                                        (4) Therefore, the hydraulic conductivity for one Lugeon value will be as follows (Eq. 5, Eq. 6):                                                                                          (5)                                                                                    (6) In order to estimate the hydraulic conductivity of the Seymareh Dam, the WPT results were analyzed in 244 boreholes at 4331 stages. Of these, 123 boreholes and 2254 stages were related to control boreholes (after the execution of the grout curtain). Also, before the execution of the grout curtain, 1277 stages boreholes were calculated in 121 boreholes and the hydraulic behavior of each stage was determined. The Lugeon value of each stages converted to hydraulic conductivity using Equation 6. Using equations 7 and 8, the horizontal (kx) and vertical (kz) hydraulic conductivity values ​​are calculated in each borehole:                                                                                                                 (7)                                                                                          (8) In equations 7 and 8, k1 represents the hydraulic conductivity of the first stage and z1 represents the length of the same stage and z represents the total borehole length. Discussion of Results The main purpose of this study was to evaluate and compare the grout curtain leakage rate with the calculation method of hydraulic conductivity obtained from the WPT (Lugeon test) and the direct measurement of discharge at drainage galleries. Accordingly, the grout curtain is divided into different zones and after obtaining the average depth of the grout curtain and calculating the hydraulic conductivity of exploratory and control boreholes in each zone, the amount of leakage before and after the grout curtain execution is calculated. . The total leakage from different parts of the galleries indicates the total leakage from the grout curtain executed at the dam site. Determining the average hydraulic conductivity (k) and the average depth of the boreholes (b) in each zone, the transmissibility (T) for each zone is calculated and with determining the gallery length in each zone, the total amount of leakage (Q) for each zone is estimated. According to the calculation, the leakage rate of the Seymareh dam grout curtain is based on tests performed before and after the grout curtain execution for a reservoir with a water level of 720 m.a.s.l equals 560 and 212 liter per Second. Therefore, it was found that the execution of the grout curtain reduced the amount of leakage in the Seymareh Dam by 62%. The behavior of fractures and joints in a borehole can be interpreted by a WPT in which a series of effective pressures are applied to the borehole sections. The Lugeon values obtained for the pressure steps of a stage test can, in sum, indicate the relative number and size of joints and fractures, the suitability of the maximum design pressure, and the tendency of the joints to be leached by flow pressure. Since the injection operation changes the hydraulic behavior of the rock, the hydraulic behavior of all sections was investigated before and after the grout curtain execution. The results show that 8% of stages have wash out behavior before grout curtain execution and 10% of stages show wash out behaviors after grout curtain execution. Also, 4% of the sections had void filling behavior prior to grout curtain execution, and 5% of the stages showed void filling behavior after the grout curtain execution. In dam construction projects, the actual discharge from the dam curtain is measured based on the drainage holes discharge. For the validation of the calculated real leakage number, drainage borehole discharge data have been estimated. The total discharge of drainage in full open valve was 211 liters per second. Since at the time of drainage discharge measurement in fully open valve, the reservoir water was at level 698, for verification, the leakage calculation based on level 720m.a.s.l was calculated again based on level 698m.a.s.l. According to the calculation, the leakage rate of the Seymareh dam grout curtain is based on tests performed before and after the grout curtain execution for a reservoir with a water level of 698 m.a.s.l equals 441 and 193 liters per Second. Drainage discharges are usually influenced by two basic factors: 1 - The amount of water that passes through the grout curtain. 2 - The amount of water that moves down behind the grout curtain and leaks under the grout curtain. In the case of seepage under the dam, only the vertical hydraulic conductivity (kz) of the lower dam galleries is effective. Whatever the vertical hydraulic conductivity of the upper levels, the seepage under the grout curtain is proportional to the potential for vertical overburden. Based on the leakage calculations of the exploratory boreholes (before the grout curtain execution), the total vertical leakage of the galleries is 8 liters per second. As mentioned, based on the analysis of the Lugeon test results after the grout curtain execution, ten percent of the wash out  behavior sections show that they will theoretically increase the leakage by 10 percent over time (+ 10%). Also, five percent of void filling behaviors indicate that they will theoretically decrease leakage by 5 percent over time (-5%). The difference between the two can be seen as an increase of five percent over time. Also, based on the analysis of the Lugeon test before the grout curtain execution, eight percent of the sections show wash out behavior that theoretically will increase the leakage by 8 percent over time. Also, four percent of the stages show void filling behavior, which theoretically will reduce the leakage by four percent over time. Comparing the two can predict a four percent increase in leakage over time. The amount of drainage discharge at the Seymareh Dam when the reservoir level is 698 m is calculated as follows: Drainage discharge = (grout curtain leakage+ 5% leakage) + (seepage under grout curtain + 4% leakage) Drainage discharge (reservoir level 698) = (193×1.05) + (8×1.04) = 202.65 + 8.32 = 210.97 = 211 Ls-1 The calculated number corresponds to the measured real number, which indicates very high accuracy of the model. This is for two reasons: 1- The boundary conditions in the model are well considered and 2- The equation presented in this study for converting the Lugeon value to hydraulic conductivity is highly accurate. Conclusions The following results have been obtained WPT in the rock formations of the Seymareh Dam site: 1-   By performing the Lugeon test, the intrinsic permeability of the environment can be directly measured. 2-   Comparison of the results obtained from the calculation of leakage from this relationship with the measured leakage from drainage galleries indicates the appropriate accuracy of the obtained relationship in this study. 3-   The results of direct measurements of the leakage from downstream galleries show that the grout curtain executed in the Seymareh Dam is of good quality and has been effective in reducing leakage (about 62%). 4-   In analyzing the leakage at the dam site, one should also consider the hydraulic behavior of the rock and pay particular attention to the behavior of wash out and void filling because wash out and void filling behavior are both dependent on the passage of time. In areas with wash out behavior and void filling, the amount of water passing through these sections increases and decreases with time. Since increasing the number of WPT plays an important role to more accurate estimation of hydraulic properties and better evaluation of rock mass behavior against water flow, it is recommended some Lugeon test perform in the exploratory boreholes and check holes in each grout gallery.}, keywords = {Water Pressure Test (WPT),intrinsic permeability,Hydraulic conductivity,Seymareh dam,Lugeon}, title_fa = {بررسی قابلیت آزمون فشار آب در محاسبه میزان نشت از پرده آب‌بند سد سیمره در استان ایلام}, abstract_fa = {     بررسی قابلیت نتایج آزمون فشار آب (لوژن) به منظور ارزیابی و محاسبه میزان نشت از پرده آب‌بند سد سیمره، هدف اصلی مقاله حاضر است. این سد در 40 کیلومتری شمال غربی شهرستان دره شهر در استان ایلام احداث شده است. وجود سنگ‌های کربناتی و تبخیری در محدوده ساختگاه سد، اجرای تمهیدات مناسب و ارزیابی خطر فرار آب در این پروژه را ضروری ساخته است. بدین منظور برآورد هدایت هیدرولیکی (نفوذپذیری) سنگ‌های ساختگاه با استفاده از  آزمون فشار آب موضوع تحقیق  این مطالعه قرار گرفته است. این آزمایش‌ها در مقاطع گمانه‌های اکتشافی قبل از اجرای پرده آب‌بند و گمانه‌های کنترلی بعد از اجرای پرده آب‌بند، به انجام رسیده و مقادیر هدایت هیدرولیکی افقی و عمودی برای هر گالری تزریق محاسبه گردیده است. با مشخص شدن هدایت هیدرولیکی افقی و عمودی، مقدار نشت از پرده آب‌بند، در دو بعد محاسبه گردیده است که بیانگر میزان نشت قابل توجه از پرده آب‌بند است. مقدار نشت محاسبه شده در آزمایش‌ها با دبی گمانه‌های زهکشی مقایسه و مشخص گردید که این دو مقدار تا حد زیادی با هم انطباق دارند (حدود 95 درصد). از این‌رو مشخص گردید که با استفاده از نتایج آزمون فشار آب، می‌توان نفوذپذیری ذاتی  واحدهای سنگی ساختگاه را با دقت مناسب اندازه‌گیری نمود. نتایج مطالعات نشان می‌دهد که رابطه تعریف شده جهت تبدیل عدد لوژن به هدایت هیدرولیکی ، رابطه‌ای مناسب برای سنگ‌های مشابه در زاگرس چین‌خورده است.}, keywords_fa = {آزمون فشار آب,نفوذپذیری ذاتی,هدایت هیدرولیکی,سد سیمره,لوژن}, url = {https://hydro.tabrizu.ac.ir/article_10600.html}, eprint = {https://hydro.tabrizu.ac.ir/article_10600_14a1877c11abfbca0ae951281fe994f6.pdf} } @article { author = {Samani, Saeideh and Boustani, Fardin and Irajizadeh, Morad}, title = {Application of Reverse Geochemical Model and Hydrogeochemical Methods to Investigate the Salinity Source of Sarvestan Aquifer}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {16-33}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.10602}, abstract = {Hydrogeochemical characteristics and origin of salinity in Sarvestan AquiferAbstract In order to investigate the groundwater quality in the study area Sarvestan Aquifer, 25 samples of groundwater have been taken in June 2016. Q mode hierarchical cluster analysis (HCA) was used to partition groundwater in the study area into hydrochemical facies. Two major water groups were identified by HCA. Groundwater samples collected from the study area were classified as recharge area water (Group 1: Ca–Cl water) in the Southern and Southeast regions. Discharge area waters were identified in the vicinity of Maharlu lake and in western and northwest parts of the study area (Group 2: Na–Cl water). Principal components analysis (PCA) with varimax rotation using the Kaiser criterion identified two principal sources of variation in the hydrochemistry. A factor 1 accounts for the salinity of the water and the second factor represent calcite dissolution from Calcareous formations located in the eastern and southeast parts of the area. Inverse modeling for major ions and the results of HCA confirmed the results obtained with PCA. The results of this study show that the integration of statistical results from hydrogeochemical data with the inverse geochemical model can help in identifying the geological factors affecting groundwater quality. this study identified important mechanisms in the composition of Group 2 waters are reverse flow from the Maharlu Lake toward the aquifer and the presence of Hormoz and Sachun formations located in the northern and northeastern parts of the study area. Key words: Geochemical methods, PHREEQC, Source of salinity, Sarvestan Aaquiferآقانباتی، ع.، 1383، زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشاف معدنی کشور.Alley, W. M., 1993, Regional Ground-Water Quality, Van Nostrand Reinhold, New York. Back, W., 1960. Origin of hydrochemical facies of ground water in the Atlantic Coastal Plain. In Proceedings of 21st international geological congress, Copenhagen (Vol. 1, pp. 87-95).Back, W. and Hanshaw, B.B., 1965. Advances in hydro-science. Chemical geohydrology, 11, p.49.Bowser, C.J. and Jones, B.F., 2002. Mineralogic controls on the composition of natural waters dominated by silicate hydrolysis. American Journal of Science, 302(7), pp.582-662.Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T.2010. Multivariate statistical characterization of groundwater quality in Ain Azel plain, Algeria. African Journal of Environmental Science and Technology, 4(8), pp.526-534.Ceron, J.C., Pulido-Bosch, A. and Bakalowicz, M., 1999. Application of principal components analysis to the study of CO2-rich thermomineral waters in the aquifer system of Alto Guadalentín (Spain). Hydrological sciences journal, 44(6), pp.929-942.Chebotarev, I.I., 1955. Metamorphism of natural waters in the crust of weathering—1. Geochimica et Cosmochimica Acta, 8(1-2), pp.22-48.Datta, P. S., and Tyagi, S. K., 1996. Major ion chemistry of ground water in Delhi area: chemical weat hering processes and ground water flow regime. Journal of Geological Society of India, 47, pp.179-188. Farnham, I.M., Stetzenbach, K.J., Singh, A.K. and Johannesson, K.H., 2000. Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system. Mathematical Geology, 32(8), pp.943-968.Freeze, R. A., and J. A. Cherry. 1979. Ground Water. Prentice Hall, Englewood Cliffs, NJ.Gerla, P.J., 1992. Pathline and geochemical evolution of ground water in a regional discharge area, Red River Valley, North Dakota. Groundwater, 30(5), pp.743-754.Garrels, R. M., and Mackenzie, F. T., 1971. Evolution of sedimentary rocks.Garrels, R.M. and Mackenzie, F.T., 1967. Origin of the chemical compositions of some springs and lakes.Ghali, T., Marah, H., Qurtobi, M. and El Mansouri, B., 2017, November. Application of Inverse Geochemical Modelling to Understand Geochemical Evolution of Groundwater in Berrechid Aquifer, Morocco. In Euro-Mediterranean Conference for Environmental Integration, pp. 683-684.Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science, 170(3962), pp.1088-1090.Grande, J.A., Gonzalez, A., Beltran, R. and Sánchez‐Rodas, D., 1996. Application of Factor Analysis to the Study of Contamination in the Aquifer System of Ayamonte‐Huelva (Spain). Groundwater, 34(1), pp.155-161.Güler, C., Thyne, G. D., McCray, J. E., and Turner, K. A., 2002. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10(4), pp. 455-474.Güler, C., & Thyne, G. D. (2004). Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. Journal of Hydrology, 285(1), 177-198.Hem, J.D. 1985. Study and Interpretation of the Chemical Characteristics of Natural Water. US Geological Survey, Water Supply Paper, 2254.Ibrahim, K.M. and El-Naqa, A.R., 2018. Inverse geochemical modeling of groundwater salinization in Azraq Basin, Jordan. Arabian Journal of Geosciences, 11(10), pp.237.Kaiser, H. F., 1960. The application of electronic computers to factor analysis. Educational and psychological measurement, pp.141-151.Kamensky, G.N., 1958. Hydrochemical zoning in the distribution of underground water. In Symposium of Ground Water Proceedings, Calcutta. pp. 292).Manoj, S., Thirumurugan, M. and Elango, L., 2019. Hydrogeochemical modelling to understand the surface water–groundwater interaction around a proposed uranium mining site. Journal of Earth System Science, 128(3), pp.49.Morgan, C.O. and Winner Jr, M.D., 1962. Hydrochemical facies in the 400 foot and 600 foot sands of the Baton Rouge area, Louisiana. US Geol. Surv. Prof. Paper, 450, pp.120-121.Murphy, K.P., 2012. Machine learning: a probabilistic perspective. MIT press.Mazor, E., 1991, Applied Chemical and Isotopic Groundwater Hydrology, John Wiley, New York. Naderi Peikam, E. and Jalali, M., 2016. Application of inverse geochemical modelling for predicting surface water chemistry in Ekbatan watershed, Hamedan, western Iran. Hydrological Sciences Journal, 61(6), pp.1124-1134.Parkhurst, D. L., and Appelo, C. A. J., 1999, User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, pp. 54-73, 98-103.Parkurst, D.L., Thorstenson, D.C. and Plummer, L.N., 1980. PHREEQE, a computer program for geochemical calculations. US Geological Survey Water Resources Investigations Report, 80, 96 pp.Smith, L. I., 2002. a tutorial on principal components analysis. Cornell University, USA, pp.51- 52.Plummer, N. and Back, W., 1980. The mass balance approach: application to interpreting the chemical evolution of hydrologic systems. American Journal of Science, 280(2), pp.130-142.Plummer, L.N., Prestemon, E.C. and Parkhurst, D.L., 1994. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0. Water-Resources Investigations Report, 94, p.4169.Samani, S. and Moghaddam, A.A., 2015. Hydrogeochemical characteristics and origin of salinity in Ajabshir aquifer, East Azerbaijan, Iran. Quarterly Journal of Engineering Geology and Hydrogeology, 48(3-4), pp.175-189.Sanchez-Martos, F., Jimenez-Espinosa, R. and Pulido-Bosch, A., 2001. Mapping groundwater quality variables using PCA and geostatistics: a case study of Bajo Andarax, southeastern Spain. Hydrological Sciences Journal, 46(2), pp.227-242.Seaber, P.R., 1965. Variations in chemical character of water in the Englishtown Formation, New Jersey. US Government Printing Office.Smith, L.I., 2002. A tutorial on principal components analysis.Stallard, R.F. and Edmond, J.M., 1983. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research: Oceans, 88(C14), pp.9671-9688.Stetzenbach, K.J., Hodge, V.F., Guo, C., Farnham, I.M. and Johannesson, K.H., 2001. Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Nevada, USA. Journal of Hydrology, 243(3-4), pp.254-271.Suvedha, M., Gurugnanam, B., Suganya, M., and Vasudevan, S., 2009. Multivariate statistical analysis of geochemical data of ground water in Veeranam catchment area, Tamil Nadu. Journal of the Geological Society of India, 74(5), pp. 573-578.Walton, W. C., 1970, Groundwater Resource Evaluation, McGraw-Hill, Inc.Ward Jr, J. H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), pp. 236-244Ward Jr, J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), pp.236-244.White, A.F., Claassen, H.C. and Benson, L.V., 1980. The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainier Mesa, Nevada. US Government Printing Office.}, keywords = {Geochemical methods,PHREEQC,Source of salinity,Sarvestan Aaquifer}, title_fa = {استفاده از مدل ژئوشیمیایی معکوس و روش‏های هیدروژئوشیمی در جهت بررسی منشأ شوری آبخوان سروستان}, abstract_fa = {در این مطالعه مدل ژئوشیمیایی معکوس با استفاده از نرم‌افزار فری‌کیوسی و روش آماری آنالیز خوشه‌ای برای تعیین منشأ تشکیل‌دهنده‌های شیمیایی و منشأ شوری در آبخوان دشت سروستان به کار گرفته‌شده است. محدوده مطالعاتی سروستان در جنوب حوضه آبریز دریاچه‌های طشک - بختگان و مهارلو واقع‌شده است. برای بررسی کیفیت آب زیرزمینی در منطقه موردمطالعه، 25 منبع انتخابی کیفی آب زیرزمینی در خردادماه سال 1397 مورد استفاده قرارگرفته است. از روش آماری آنالیز خوشه‌ای جهت خوشه‌بندی نمونه‌های آب زیرزمینی استفاده گردید و با استفاده از این روش نمونه‌های آب زیرزمینی به دو گروه واقع در منطقه تغذیه و تخلیه تقسیم‌بندی گردید، به‌طوری‌که گروه 1 با تیپ کلرید کلسیم دارای آب منطقه تغذیه از ارتفاعات جنوب شرق و شرق منطقه است و گروه 2 با تیپ کلرید سدیم جز منطقه تخلیه و واقع در بخش غرب و شمال غرب دشت و مناطق مجاور با دریاچه مهارلو می‌باشند. در روش آماری تحلیل عاملی دو عامل مؤثر در فرآیندهای هیدروشیمیائی که کیفیت آب زیرزمینی دشت سروستان را تحت تأثیر قرار داده-اند شناسایی گردید. عامل اول مربوط به شور شدگی آبخوان است و عامل دوم هوازدگی سازندهای آهکی با محتوای بالای کلسیت واقع در بخش شرق و جنوب شرق منطقه را مؤثر در کیفیت آب زیرزمینی نشان داد. نتیجه مدل ژئوشیمیایی معکوس به کمک روش آماری آنالیز خوشه‌ای و نمایه‌های اشباع نتایج روش آماری تحلیل عاملی را تأیید می‌کند. نتایج این تحقیق نشان می‏دهد که ادغام نتایج آماری از داده‏های هیدروژئوشیمیایی با مدل ژئوشیمیایی معکوس در شناسایی فاکتورهای زمین‌شناسی مؤثر در کیفیت آب زیرزمینی کمک شایانی می‏نماید. در این محدوده مطالعاتی مهم‌ترین مکانیسم مؤثر در کیفیت آب گروه دوم و شوری آب در این گروه تحت تأثیر حضور سازندهای هرمز و ساچون واقع در بخش‌های شمال و شمال شرقی محدوده مطالعاتی و جریان‌های معکوس از سمت دریاچه مهارلو به سمت آبخوان است.}, keywords_fa = {مدل ژئوشیمیایی,نرم‌افزار فری کیوسی,منشأ شوری,دشت سروستان}, url = {https://hydro.tabrizu.ac.ir/article_10602.html}, eprint = {https://hydro.tabrizu.ac.ir/article_10602_3d2b0a137369f3dd0a32c7a4659dd7f0.pdf} } @article { author = {جمشیدزاده, زهرا}, title = {Groundwater Quality Assessment in Kashan Pplain Using hydrogeochemistry analysis}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {33-46}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.9497}, abstract = {Groundwater is the main source of water supply for different uses in the Kashan plain. Therefore, investigation and identification of natural and anthropogenic factors affecting its quality are of great importance. In this study, the groundwater quality of the Kashan plain was investigated based on hydrogeochemical analysis and water saturation index of different minerals. The chemical analysis results of groundwater quality parameters in 18 sampling points revealed that the dominant order of cations in the area is Na+> Ca2+> Mg2+> K+, while that of anions is Cl-> SO42-> HCO3-. The Chadha Plot made clear the predominance of Na-K-Cl-SO4 in 55% of the sampling points due to saline water upconing from deep layers and uncontrolled groundwater abstraction in the central part of the area, and chemical dissolution of clay-salty formations in the eastern part of the aquifer. In 38% of the samples, water type was Ca-Mg-Cl-SO4 and since gypsum is negligible in the study area, its origin can be the chemical fertilizers used for the agricultural activities in the region. According to the results of the saturation index, groundwater was saturated for calcite and dolomite minerals, and it was undersaturated for halite, gypsum, anhydride, and sylvite. The results of the combined diagrams of water quality analysis showed that ion exchange and chemical precipitation of calcite and dolomite, and halite dissolution are the major factors controlling groundwater quality in the study area. The ionic ratios did not show the effect of groundwater evaporation and dissolution of gypsum on the quality of water in the region. Carbonate dissolution was observed by reverse ion exchange in the limited part of the region.}, keywords = {Ion exchange,Hydrogeochemistry Analysis,Kashan Plain,Saturation index,Chadha plot}, title_fa = {بررسی کیفیت آبخوان دشت کاشان با استفاده از تحلیل‌های هیدروژئوشیمی}, abstract_fa = {آب‌زیرزمینی اصلی‌ترین منبع تأمین آب جهت مصارف مختلف در دشت کاشان است. بنابراین، بررسی و شناسایی عوامل طبیعی و انسانی مؤثر بر کیفیت آن از اهمیت ویژه‌ای برخوردار است. در این تحقیق کیفیت آب‌زیرزمینی دشت کاشان بر پایه تحلیل‌های هیدروژئوشیمی و شاخص اشباع شدگی آب نسبت به کانی‌های مختلف مورد بررسی قرار گرفت. نتایج آنالیز شیمیایی پارامترهای کیفی آب در 18 نقطه نمونه‌برداری نشان داد که ترتیب غالب کاتیونها در آبخوان کاشان Na+> Ca2+>Mg2+>K+ و آنیونها Cl->SO42-> HCO3- است. تیپ غالب آب در 55% از نقاط نمونه‌برداری بر پایه نمودار چودا Na-K-Cl-SO4 شناسایی شد که دلیل آن بالا آمدگی آب شور از لایه‌های زیرین به دلیل پمپاژ بی رویه در بخش های مرکزی دشت و انحلال شیمیایی سازندهای رسی- نمکی در بخش شرقی دشت بود. در 38% از نمونه ها، تیپ آب Ca-Mg-SO4 یا Ca-Mg-Cl بود که با توجه به ناچیز بودن ژیپس در محدوده مطالعاتی، منشأ آن می‌تواند کودهای شیمیایی مورد استفاده در اراضی کشاورزی منطقه باشد. با توجه به نتایج محاسبات شاخص اشباع، آب‌زیرزمینی در محدوده مطالعاتی نسبت به کانی‌های کلسیت و دولومیت در حالت فوق اشباع و نسبت به هالیت، ژیپس، انیدرید و سیلویت در حالت تحت اشباع قرار داشت. نتایج نمودارهای ترکیبی بررسی کیفیت آب نشان داد که تبادل یونی و ترسیب شیمیایی کلسیت و دولومیت و انحلال هالیت عامل اصلی کنترل کننده کیفیت آب‌زیرزمینی در محدوده مطالعاتی است. نسبت‌های یونی، تأثیر پدیده تبخیر از سطح آبخوان و انحلال ژیپس بر کیفیت آب‌زیرزمینی را در منطقه نشان نداد. انحلال کربنات در اثر تبادل یونی معکوس در بخش‌های محدودی از منطقه مشاهده شد.}, keywords_fa = {تبادل یونی,تحلیل هیدروژئوشیمی,دشت کاشان,شاخص اشباع,نمودار چودا}, url = {https://hydro.tabrizu.ac.ir/article_9497.html}, eprint = {https://hydro.tabrizu.ac.ir/article_9497_95f91d8441eee9abbce01cca6405504b.pdf} } @article { author = {Rastegaripour, Fatemeh}, title = {Application of Interval Fuzzy Multi-Stage Stochastic Model in water resource management Case study: Latian Dam}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {47-60}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.10457}, abstract = {Due to the increasing population growth, the development of industries and the increasing pollution of fresh water resources, access to adequate and adequate water has become a serious crisis in some countries.The volume of water on Earth has always been constant. The life of all living things, such as humans, animals, and plants, is directly dependent on water. has it. Due to the importance of water in current study, water allocation of Latian dam between urban and agricultural sector is considered using an interval parameter fuzzy multi-stage stochastic programming for the three periods. This model is a combination of fuzzy programming and interval parameter and multi-stage stochastic optimization framework. Needed data was collected from Tehran Regional Water Organization for the year 1991-2015. The results indicated that under the worst conditions when the level of planning in all courses is low, 46.8 million cubic meters of water shortage in the optimal allocation of low water demand than there are sections that amount in case the entire surface water flow the average period is 31 million cubic meters is altered. In the best case scenario when the surface water flow during the planning horizon is large amount of water shortage 0 million cubic meters will be reduced. Solution as the final objective function value of two expected net profit of the system during the planning horizon shows. Increase irrigation efficiency in the agricultural sector and possible use of modern irrigation systems, land area commensurate with urban water sector reform in the water supply network, employing modern technology, lowering water, education, urban water use efficiency and reduce water consumption pattern and price increases are recommended.}, keywords = {Interval Fuzzy programming,Multi-Stage Stochastic programming,Water allocation,Latian dam}, title_fa = {کاربرد مدل تصادفی فازی بازه ای چند مرحله‌ای در تخصیص آب مطالعه موردی: سد لتیان}, abstract_fa = {با توجه به رشد روز افزون جمعیت، توسعه صنایع و افزایش آلودگی منابع آب شیرین، دسترسی به آب کافی و مناسب در برخی از کشورها به یک بحران جدی تبدیل شده است. آب نه تنها برای مصارف آشامیدن وکارهایروزمره کاربرد دارد بلکه برای حل مشکلات صنایع وکاربردهای کشاورزی نقش اصلی وعمده را دارد. با توجه به اهمیت آب در این مطالعه تخصیص آب سد لتیان بین مصارف شرب و کشاورزی با کاربرد برنامه ریزی تصادفی فازی بازه ای برای سه دوره مورد بررسی قرار گرفت. مدل برنامه ریزی تصادفی فازی بازه‌ای چند مرحله‌ای از ترکیب سه مدل خطی فازی، مدل بازه ای و مدل تصادفی چندمرحله ای تشکیل شده است. داده های مورد نیاز مطالعه از سازمان آب منطقه ای استان تهران و مدیریت سد لتیان و برای سال های 70 تا 95 جمع آوری شد. نتایج مطالعه نشان داد که تحت بدترین شرایط وقتی که سطح جریان در تمام دوره برنامه ریزی کم باشد، 8/46 میلیون متر مکعب کمبود آب در حد پایین تخصیص بهینه آب نسبت به تقاضای بخش ها وجود دارد که این مقدار در حالتی که سطح جریان آب در کل دوره متوسط باشد، به 31 میلیون متر مکعب تغییر می یابد. در حالت بهترین سناریو هنگامی که سطح جریان آب در طی افق برنامه ریزی زیاد است کمبود آب وجود نخواهد داشت. حل تابع هدف دو حد نهایی ارزش مورد انتظار سود خالص سیستم را در طی افق برنامه‌ریزی نشان می‌دهد. با توجه به وضعیت بحرانی آب و خششکسالی‌های اخیر، در بخش کشاورزی افزایش راندمان آبیاری، استفاده از سیستم‌های آبیاری مدرن، تغییر الگوی کشت منطقه متناسب با آب موجود و در بخش شهری اصلاح شبکه آبرسانی، به-کارگیری تکنولوژی های مدرن کاهنده آب، آموزش صرفه جویی در مصارف آب شهری و کاهش الگوی مصرف و افزایش قیمت آب توصیه می شود.}, keywords_fa = {برنامه‌ریزی فازی بازه‌ای,برنامه‌ریزی تصادفی چند مرحله‌ای,تخصیص آب,سد لتیان}, url = {https://hydro.tabrizu.ac.ir/article_10457.html}, eprint = {https://hydro.tabrizu.ac.ir/article_10457_f08637c3ff692b8fadc8930ea018ed42.pdf} } @article { author = {Daneshvar Vousoughi, Farnaz}, title = {Using wavelet based de-noising to identify the trend of ground water level (case study: Ardabil plain)}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {61-72}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.10458}, abstract = {Ardabil plain)Groundwater is an important source of fresh water to meet the demands of growing industries such as agriculture, fisheries, mining, and manufacturing and the municipal water demands due to rise in population in different parts of the world. Efficient management of groundwater is an essential task in different regions, especially in arid and semi-arid climates that faces chronic shortage of fresh water. Thus, the detection of trends in groundwater levels is very essential in order to constantly monitor the levels of the ground water table. Nowadays, there are different statistical methods for trend analyzing hydrological time series such as t-test, regression analysis, Pearson correlation coefficient, the Spearman’s Rho, Sen’s slope, Wald–Wolfowitz and most commonly used method of Mann–Kendall (MK). Mann-Kendall (MK) test was introduced and developed by Mann (1945) and Kendall (1975), respectively. The advantage of this method is that it does not follow any specific statistical distribution. It has been widely used to analyze the monotonic trends in hydrological time series. The MK1 test for trend detection assumes that the sample data are serially independent, even though a few hydrological series show significant serial correlation. An alternative MK test is to remove first the serial correlation such as lag-1 auto regression or higher-order process from the time series prior to application of the test that its name is MK2. MK3 test is to remove all the serial correlation from the time series prior to application of the test.The objectives of the present study are: (1) to identify the trends and magnitude of trends in groundwater levels on monthly time scales with three variations of Mann-Kendall test include: (i) Mann–Kendall without autocorrelation, (ii) Mann–Kendall with lag-1 autocorrelation and trend-free pre-whitening, (iii) Mann–Kendall wi}, keywords = {Ardabil plain,De-Noising,Non-parametric test,wavelet transform}, title_fa = {استفاده از رفع نویز موجکی در بررسی روند تراز آب زیرزمینی (مطالعه موردی: دشت اردبیل)}, abstract_fa = {     هدف از این تحقیق، بررسی روند موجود در تراز آب زیرزمینی در مقیاس ماهانه در پانزده پیزومتر دشت اردبیل با استفاده از انواع روش­های ناپارامتری مان-کندال از جمله MK1، MK2 و MK3 در ترکیب با روش­های تبدیل موجک گسسته و خوشه­بندی Kmeans می­باشد. ابتدا روش خوشه­بندی برای کلاس­بندی پارامتر تراز آب زیرزمینی به خوشه­های همگن استفاده شد. سپس از روش­های مختلف ناپارامتری برای تعیین روند در پیزومترهای نمونه استفاده گردید. در مرحله بعد با استفاده از تبدیل موجک، بعد از انجام رفع نویز موجکی برای تمام پیزومترهای مرکزی روند با استفاده از سه مدل ناپارامتری برای سری­های رفع نویز شده انجام شد. نتایج روند منفی را در منطقه مورد مطالعه نشان داد. با حذف تمامی ضرایب خود همبستگی­های معنی­دار از سری­های زمانی در آزمون MK3 از شدت روند منفی تراز نسبت به آزمون MK1 به طور متوسط 2/80 درصد کاسته شد. استفاده از رفع نویز در سری­های تراز آب زیرزمینی از شدت روند منفی آن­ها به ترتیب در آزمون­های MK1، MK2 و MK3 به طور متوسط به میزان 56/12، 38/20 و 22/27 درصد کاست.}, keywords_fa = {دشت اردبیل,رفع نویز,روش ناپارامتری,تبدیل موجک}, url = {https://hydro.tabrizu.ac.ir/article_10458.html}, eprint = {https://hydro.tabrizu.ac.ir/article_10458_6ad420993bc6545589c22b35274e6fbd.pdf} } @article { author = {Uoseffi, Nasrin and Kord, Mehdi}, title = {The validation of results of groundwater monitoring network optimization for Dehgolan Plain}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {73-82}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.10601}, abstract = {In recent decades, optimization of piezometers and the reducing costs of data logging have been favored by scientific societies and become very conventional. Dehgolan plain is one of the great plains of Kurdistan province, which has been significantly exploited in recent years due to a lot of authorized and illegal wells. These wells have caused a sharp decrease in water table in this area. The purpose of this study is validating of optimization the groundwater monitoring network of Dehgolan aquifer using kriging. Hence, the active piezometers of this plain have been used in different water stress periods including 12 months of 2006, 2011 and 2016. Therefore, for each month, the best variogram was chosen based on the lowest nugget effect and ceiling and the maximum range. After calculating the estimation error during cross validation, one piezometer with least root mean square error was removed. The optimal network was determined by repeating this operation until the error of the estimate was less than 11% of the first interpolation. The results show that removable piezometers vary for different months and in a long time none of them can be ignored. Although removing of the piezometers during the first stress period did not pose a particular problem, in next water stress periods created problem and rejected the validity and reliability of optimization results due to decreased water table over time that cause to dry some piezometers. One should be very cautious in monitoring network optimization because using the seasonal data instead monthly data can be misleading and reduces the error.}, keywords = {Dehgolan plain,Groundwater,Kriging,Monitoring network}, title_fa = {اعتبارسنجی نتایج بهینه‌سازی شبکه پایش سطح آب زیرزمینی دشت دهگلان}, abstract_fa = {در دهه‌های اخیر بهینه‌سازی پیزومتر‌ها و کاهش هزینه داده‌برداری بسیار رایج شده و با اقبال جوامع علمی مواجه شده است. دشت دهگلان یکی از دشت‌های بزرگ استان کردستان است که به دلیل تعداد بسیار زیاد چاه‌های مجاز و غیر‌مجاز به صورت قابل توجهی مورد بهره‌برداری قرار گرفته و این امر باعث افت شدید سطح آب زیرزمینی در این دشت شده است. هدف از این پژوهش بهینه‌سازی شبکه پایش سطح آب زیرزمینی آبخوان دشت دهگلان با استفاده از روش کریجینگ و اعتبار‌سنجی آن است. بر همین اساس از اطلاعات پیزومتر‌های فعال این دشت در دوره‌های تنش آبی مختلف یعنی داده‌های مربوط به ماه‌های سال‌های 1385، 1390 و 1395 استفاده شده است. برای هر ماه، ابتدا بهترین واریوگرام از بین مدل‌های موجود در Arc GIS بر اساس کمترین اثر قطعه‌ای، بیشترین شعاع تأثیر و کمترین سقف، انتخاب و بر آن برازش داده شد. پس از محاسبه خطای تخمین، پیزومتری که در حین اعتبارسنجی متقابل، کمترین خطا را داشت، حذف گردید. مجدداً با تکرار این عملیات تا رسیدن به خطای تخمین کمتر از 11 درصد اولین درون‌یابی، شبکه بهینه تعیین شد. نتایج به دست آمده از این پژوهش نشان می‌دهد که در زمان‌های مختلف، پیزومتر‌های قابل حذف از ماهی به ماه دیگر متفاوت‌اند و در بازه زمانی بلند مدت نمی‌توان از داده‌برداری هیچ یک از پیزومتر‌ها صرف نظر کرد. اگرچه حذف پیزومترها در اولین دوره تنش آبی مشکل خاصی را به وجود نیاورده است اما در تنش آبی بعدی که کاهش سطح آب زیرزمینی در طول زمان سبب خشک شدن برخی از پیزومتر‌ها و خارج شدن آن‌ها از شبکه داده‌برداری شده است، مشکل ساز شده و اعتبار و پایایی نتایج بهینه‌سازی را رد می‌کند. در بهینه‌سازی شبکه پایش باید بسیار محتاط بود و استفاده از داده‌های فصلی به جای داده-های ماهانه، می‌تواند مقادیر خطا را خفیف جلوه داده و گمراه کننده باشند.}, keywords_fa = {آب زیرزمینی,دشت دهگلان,شبکه پایش,کریجینگ}, url = {https://hydro.tabrizu.ac.ir/article_10601.html}, eprint = {https://hydro.tabrizu.ac.ir/article_10601_d5f1a67eb264ba19c4a98a17f9118561.pdf} } @article { author = {Saeedi Razavi, Behzad and Arab, Alireza}, title = {Investigating the relationship between groundwater level and river and analyzing its daily flow coefficient}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {84-97}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.11269}, abstract = {In recent years, the need for integrated management of water resources has made it very important to study the interaction of surface and groundwater. Many research centers around the world are now focused on identifying the mechanisms and consequences of surface and groundwater interactions. Various field methods and modeling have also been developed in line with these efforts. One of the most important types of water exchanges in the catchments of arid and semi-arid regions occurs between rivers (as the most common surface water sources) and groundwater. These water exchanges affect the quantity and quality of water resources. In this study, by examining the daily flow coefficient, the relationship between changes in river flow coefficient and groundwater level in the vicinity of the river has been estimated. In this regard, daily groundwater level, precipitation, and flow data were examined, which showed acceptable results between river flow coefficient and water level level on a daily scale. Also, the relationship between flow and water table level and finally the relationship between flow and precipitation and groundwater level was obtained using a multivariate multivariate nonlinear regression model. Numerical was obtained.}, keywords = {Azarshahrchai,Groundwater,Precipitation,Water Table,flow coefficient}, title_fa = {بررسی ارتباط سطح آب زیرزمینی با رودخانه و تحلیل ضریب جریان روزانه آن}, abstract_fa = {      در سال‌های اخیر لزوم مدیریت یکپارچه منابع آب باعث شده تا بررسی برهمکنش آب‌های سطحی و زیرزمینی اهمیت زیادی پیدا کند. هم‌اکنون مراکز تحقیقاتی زیادی در سرتاسر دنیا بر شناسایی مکانیزم‌ها و پیامدهای برهمکنش آب‌های سطحی و زیرزمینی متمرکز شده‌اند. روش‌های مختلف صحرایی و مدل‌سازی نیز همگام با این تلاش‌ها توسعه پیدا کرده‌اند. یکی از مهم‌ترین انواع تبادلات آبی در حوزه‌های آبریز مناطق خشک و نیمه خشک، بین رودخانه‌ها (به عنوان معمول‌ترین منابع آب سطحی) و آب‌های زیرزمینی رخ می‌دهد. این تبادلات آبی کمیت و کیفیت منابع آب را تحت تأثیر قرار می‌دهد. در این مطالعه، با بررسی ضریب جریان روزانه، ارتباط بین تغییرات ضریب جریان رودخانه و سطح آب زیرزمینی در مجاورت رودخانه برآورد گردیده است. در این ارتباط داده­های روزانه تراز آب زیرزمینی، بارش،  و جریان مورد بررسی قرار گرفت که نتایج قابل قبولی بین ضریب جریان رودخانه و سطح تراز ایستابی را در مقیاس روزانه نشان داد. همچنین رابطه­ی جریان با تراز سطح ایستابی و درنهایت ارتباط جریان با بارش و تراز آب زیرزمینی با استفاده از مدل رگرسیون غیرخطی چند متغیره با همبستگی بالا به دست آمد و با مشتق گرفتن از این روابط تغییرات آن‌ها نسبت به تراز سطح ایستابی به­صورت عددی حاصل شد.}, keywords_fa = {آذرشهرچای,آب زیرزمینی,بارش,سطح ایستابی,ضریب جریان}, url = {https://hydro.tabrizu.ac.ir/article_11269.html}, eprint = {https://hydro.tabrizu.ac.ir/article_11269_f2e28bc68a8e49824b38e44554b6314c.pdf} } @article { author = {Behyari, Mahdi and Jabari, Akbar and Alizadeh, Akram}, title = {Monitoring of buried faults and their role on the groundwater flow in the Urmia plain}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {98-109}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.10456}, abstract = {The Urmia plain at west of the Lake Urmia, is situated northwest of Iran. The effect of fault activity can be distinguished in the surrounding rock units but, evidence of faulting not recorded in the Quaternary unit due to low competency of them. The displacement of the rock units proposed a normal mechanism to the faults in the studied region. The modeling of faults and groundwater flow conducted using 160 borehole data with a total 1900m excavation in the 61 points of the study area, 12 trench study and finally 4 cross-sections. The results show sandstone at a depth of 3 to 6m, marl at 5 to 12m, and gravel at 8 to 16m. The groundwater flow direction is from south to north that at the hanging wall of fault the water table depth decreased near the surface. On one cross section (DD'), gravel is at depth 30m in the hanging wall of fault (BH23) but in the footwall at depth 14m (BH40) indicating a hidden fault in this part of the plain. The water table was encountered at 6m in log 18 and at 19m in log 23 also suggesting displacement by a hidden NW-SE fault with southwest dip. In general, in four cross sections and with correlation of the stratigraphic units and tracking of water table changes, 19 hidden faults were identified mostly having NW-SE trends and dips to SW.}, keywords = {hidden fault,Quaternary,Groundwater flow,3D model,Urmia}, title_fa = {شناسایی گسل‌های مدفون و نقش آن‌ها در جریان آب‌های زیرزمینی دشت ارومیه}, abstract_fa = {       دشت ارومیه واقع در باختر دریاچه ارومیه، در شمال باختری ایران قرار دارد. آثار حرکتی گسل­ها در واحدهای سنگی اطراف قابل مشاهده بوده ولی به دلیل مقاومت کم واحدهای کواترنر، شواهد گسلشی در آن‌ها ثبت نگردیده است. وجود گسل‌های مدفون سبب ایجاد تغییرات در سطح آب زیرزمینی می‌شود، از این تغییرا می­توان برای شناسایی گسل­های پنهان استفاده کرد. مدل‌سازی گسل­ها و مسیر آب زیرزمینی در این منطقه با استفاده از داده­های زیر سطحی 160 گمانه به متراژ و مجموع عمق حفاری 1900 متر از 61 نقطه دشت، 12 ترانشه و چهار مقطع عرضی انجام شده است. نتایج نشان می­دهد واحد ماسه سنگ در عمق 3 تا 6 متر، مارن در 5 تا 12 متر و شن در عمق 8 تا 16 متری قرار دارد. جهت جریان آب زیرزمینی نیز از جنوب به شمال می‌باشد که در فرادیواره گسل­ها، سطح تراز به سطح زمین نزدیک‌تر می­شود. در مقطع DD' مطالعه شده، شن در فرادیواره گسل در عمق 30 متر (گمانه 23) بوده  اما در فرودیواره در عمق 14 متر (گمانه 40) قرار دارد که نشان دهنده وجود یک گسل نرمال پنهان در این منطقه است. همچنین، سطح آب در گمانه‌ی 18، در عمق 6 متر و در گمانه‌ی 23، در عمق 19 متری ثبت شده است که نشان دهنده جابجایی توسط یک گسل پنهان با راستای NW-SE  با شیب به سمت جنوب باختری است. به طور کلی در چهار مقطع عرضی با تطبیق ستون چینه‌شناسی و تغییرات سطح آب زیرزمینی، 19 گسل پنهان غالباً با روند NW-SE و شیب SW  شناسایی شده اند. با توجه به الگوی جابجایی، ساز وکار حرکتی گسل­ها نرمال می‌باشد.}, keywords_fa = {گسل پنهان,کواترنر,جریان آب زیر زمینی,مدل سه‌بعدی,ارومیه}, url = {https://hydro.tabrizu.ac.ir/article_10456.html}, eprint = {https://hydro.tabrizu.ac.ir/article_10456_a4f75a76db71c78185d60c92b7d6853c.pdf} } @article { author = {Rahbar, Akram and Talkhabi, Mahdi and Nakhaei, Mohammad}, title = {The application of modified fuzzy least-squares regression for estimation of hydrodynamic coefficients by the Cooper-Jacob method (Case study: Sohan plain)}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {110-117}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.10453}, abstract = {Estimation of aquifer hydrodynamical parameters is one of the important issues in groundwater resource management. It is essential to determine the aquifer's hydraulic properties in order to understand and recognize the natural flow pattern of an aquifer and groundwater measurement. As aquifer characteristics, transmissivity and the storage coefficient may vary spatially due to the existence of different subsurface materials, resulting in geological heterogeneity. Assessment of transmissivity and the storage coefficient, as the most significant hydrodynamical parameters, allows for a quantitative prediction of aquifer response to recharge and discharge rate. There are many different methods for hydrodynamical parameter estimation, which include a variety of methods such as: empirical formulas, laboratory methods, geophysical methods, tracking experiments and pumping tests. However, among all these techniques, the application of pumping test data is the most useful and common method, with the ability to reflect a wide range of aquifer. Using drawdown-time pumping test data can calculate the aquifer parameters which is able to employ different methods. The Cooper Jacob equation is used to determine the transmissivity and the storage coefficient for a confined aquifer using pump test results. In this research, a modified fuzzy least-squares regression (MFLSR) method uses imprecise pump test data to obtain fuzzy intercept and slope values which are then used in the Cooper Jacob method. Fuzzy membership functions for the transmissivity and the storage coefficient is then calculated using the extension principle. The modified fuzzy least-squares regression that is coupled with the Cooper Jacob method allows the analyst to ascertain the uncertainty that is inherent in the estimated parameters in an aquifer.}, keywords = {The confined aquifer,Hydrodynamic coefficients,modified fuzzy least-squares regression,Pumping test}, title_fa = {کاربرد رگرسیون حداقل مربعات فازی اصلاح‌شده در برآورد پارامترهای هیدرودینامیکی سفره محبوس با روش کوپر-ژاکوب (مطالعه موردی: دشت سوهان)}, abstract_fa = {      برآورد پارامترهای هیدرودینامیکی آبخوان یکی از مسائل مهم در مدیریت منابع آب زیرزمینی است. شناخت خصوصیات هیدرولیکی آبخوان­ها به منظور درک بهتر و تعیین الگوی جریان طبیعی یک آبخوان و سنجش آب زیرزمینی الزامی است. ضریب تراوایی و ضریب ذخیره از جمله ویژگی­های هیدرودینامیکی آبخوان هستند که به دلیل وجود ناهمگنی­های زمین‌شناسی، ناشی از وجود طبقات مختلف زیرسطحی، ممکن است دارای تغییرات مکانی زیادی باشند. برآورد این خصوصیات امکان پیش­بینی کمی واکنش آبخوان به میزان تغذیه و تخلیه را فراهم می­کند. روش‌های مختلفی برای تخمین پارامترهای هیدرودینامیکی وجود دارد که می­توان به روش‌هایی چون: استفاده از فرمول‌های تجربی، روش‌های آزمایشگاهی، روش­های ژئوفیزیکی، آزمایش ردیابی و آزمون پمپاژ اشاره کرد. استفاده از داده‌های آزمون پمپاژ به منظور برآورد پارامترهای هیدرودینامیکی آبخوان، از بهترین و متداول‌ترین روش‌ها، با قابلیت انعکاس گستره وسیعی از آبخوان می‌باشد. با استفاده از داده‌های افت- زمان آزمون پمپاژ با روش‌های مختلفی می‌توان پارامترهای آبخوان را محاسبه نمود. معادله کوپر-ژاکوب جهت تعیین پارامترهای هیدرودینامیکی آبخوان، ضریب ذخیره و انتقال، برای آبخوان محبوس استفاده می‌شود. در این پژوهش از روش رگرسیون حداقل مربعات فازی اصلاح شده (Modified Fuzzy least-squares regression)، برای ‌داده‌های آزمون پمپاژ استفاده می‌شود تا داده‌های آزمون پمپاژ غیردقیق را به‌منظور محاسبه شیب و عرض از مبدأ فازی به کار برده و سپس این مقدار را برای محاسبه ضریب ذخیره و قابلیت انتقال آبخوان توسط روش کوپر-ژاکوب استفاده نمود. برای محاسبه توابع فازی ضریب ذخیره و ضریب تراوایی از اصل توسعه استفاده شد. روش رگرسیون حداقل مربعات فازی اصلاح‌شده (MFLSR) توأم با روش کوپر-ژاکوب به شخص توانایی تحلیل عدم قطعیت ذاتی پارامترهای محاسبه شده را خواهد داد.}, keywords_fa = {آبخوان محبوس,آزمون پمپاژ,رگرسیون حداقل مربعات فازی اصلاح‌شده,ضرایب هیدرودینامیکی}, url = {https://hydro.tabrizu.ac.ir/article_10453.html}, eprint = {https://hydro.tabrizu.ac.ir/article_10453_b68f83e9213d29f54e0a18ccfdb185e9.pdf} } @article { author = {Ghourdoyee Milan, Sami and Aryaazar, Naser and Javadi, Saman and Razdar, Babak}, title = {Simulation of groundwater head using LS-SVM and comparison with ANN & MLR}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {118-133}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.10455}, abstract = {Nowadays, in order to implement management scenarios, choosing appropriate practical solutions for managing groundwater resources as well as determining the appropriate groundwater harvesting rate requires a simplified aquifer model and its simulation. On the other hand, modeling of groundwater aquifers is very important for simulating and predicting the water level. The first step in groundwater management is the simulation of groundwater level which is followed by its prediction based on the factors affecting the groundwater level. In this study, three models, namely, least-square support vector machine (LS-SVM), multivariate linear regression (MLR) and artificial neural networks (ANN) were used to simulate the groundwater level. The study was carried out on Imam-Zadeh Jafar aquifer in Kohgilouye and Boyerahmad province, Iran. To do this, several input features including groundwater level in previous month, precipitation, temperature, aquifer exploitation, and evaporation in the current month were considered to predict groundwater level at the end of the current month. The target time period was monthly data of 20 years from 1997 to 2016. About 75% of the data were used for model training and the remaining for test. The results revealed that all three models were capable of simulating groundwater level with acceptable performance. Among them, LS-SVM having groundwater level in previous month, aquifer exploitation, and precipitation as input features resulted in the highest accuracy with RMSE, MAPE, and R2 equal to 0.61, 0.069, and 0.99, respectively. These models can be used as alternatives for numerical models to manage and predict groundwater level in groundwater resources management problems.}, keywords = {Groundwater,Imam-Zadeh Jafar aquifer,Groundwater level simulation,LS-SVM,MLR}, title_fa = {شبیه‌سازی تراز سطح آب زیرزمینی با استفاده از مدل حداقل مربعات ماشین بردار پشتیبان و مقایسه آن با شبکه عصبی مصنوعی و رگرسیون خطی چند متغیره}, abstract_fa = {       امروزه برای اجرای سناریوهای مدیریتی، انتخاب راهکارهای عملی مناسب در جهت مدیریت منابع آب زیرزمینی و همچنین تعیین نرخ مناسب برداشت از آب زیرزمینی نیازمند ساخت مدل ساده‌شده‌ای از آبخوان و شبیه‌سازی آن می‌باشد. نخستین اقدام در جهت مدیریت آب زیرزمینی، شبیه‌سازی تراز سطح آب زیرزمینی و سپس پیش‌بینی آن با توجه به عوامل مؤثر بر تراز سطح آب زیرزمینی است. ازاین‌رو در تحقیق حاضر، سعی شده است از سه مدل مختلف داده مبنا جهت شبیه‌سازی تراز سطح آب زیرزمینی استفاده گردد، تا کارایی مدل حداقل مربعات بردار پشتیبان نسبت به مدل رگرسیونی خطی چند متغیره و شبکه عصبی مقایسه گردد. رویکرد حاضر در آبخوان امام‌زاده جعفر در استان کهگیلویه و بویراحمد انجام شد. بدین منظور الگوهای مختلفی با ترکیب داده‌های ورودی تراز سطح آب زیرزمینی در ماه قبل، بارش، دما، برداشت از آبخوان و تبخیر در ماه حاضر برای برآورد مقدار تراز سطح آب زیرزمینی در انتهای ماه بررسی تدوین گردید. طول دوره موردنظر 20 ساله شامل240 داده و در گام ماهانه از سال 1376 تا 1395 در نظر گرفته شد. از حدود 75 درصد داده‌ها برای آموزش مدل و 25 درصد جهت آزمون مدل‌ها و انتخاب الگوی برتر از بین الگوهای مختلف استفاده گردید. نتایج نشان داد که هر سه مدل بکار رفته با دقت قابل قبولی قادر به شبیه‌سازی تراز سطح آب زیرزمینی هستند. از بین مدل‌ها، مدل حداقل مربعات ماشین بردار پشتیبان با معیارهای ارزیابی RMSE، MAPE و ضریب تبیین برای بخش صحت سنجی به ترتیب برابر 61/0 متر، 069/0 و 99/0 برای الگوی با ترکیب پارامترهای تراز سطح آب زیرزمینی در انتهای ماه قبل، برداشت از آبخوان و بارندگی ماه موجود به‌عنوان مدل برتر انتخاب گردید درنهایت از مدل‌های مذکور می‌توان به‌عنوان جایگزین مدل‌های عددی در جهت مدیریت و پیش‌بینی تراز سطح آب زیرزمینی استفاده کرد.}, keywords_fa = {آب زیرزمینی,آبخوان امام‌زاده جعفر,شبیه سازی آب زیرزمینی,MLR,LS-SVM}, url = {https://hydro.tabrizu.ac.ir/article_10455.html}, eprint = {https://hydro.tabrizu.ac.ir/article_10455_8847fc6ed08b100737d23154c325c05b.pdf} } @article { author = {vafaei poursorkhabi, ramin and Nadiri, Ataollah and zarean, ahmad and fathi, hamid}, title = {The Impact of Construction on the Discharge of Sareen Spa Springs Using Numerical Analysis and Zoning Map}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {135-149}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.10454}, abstract = {The purpose of the present study was to identify the irrigation canals of the spring springs in the city of Sarein and the impact of construction on the hot springs. In this regard, field studies were carried out based on geophysical experiments in the area with geoelectric and ground-penetrating radar devices and hot water mapping was prepared. Based on the results of these experiments, the hot-water trajectory penetrates the ground surface through vertical disruptions at elevated depths through vertical aquifers at specific depths, causing source springs to form. To determine resistivity parameters, soil type and depth of soil, two log wells were drilled at 25 and 30 m depths and groundwater level at 1.5 m depth. For numerical modeling of three modes without building and land alone, the building is present in 5, 10, 15, 20 and 25 stories at 10 to 210 m intervals with 10 m incremental step in static and dynamic modes. The analysis was done. For dynamical analysis, the Turkmanchai earthquake mapping was used and the analysis was performed in Plexis software. The dead and live loads are based on hotel-use buildings. Based on the results above, up to 70 m in the zoned map of the report indicated in red, construction was not permitted and within 80 m of the red border edge, shown in brown Given, it was detected for buildings up to 5 floors and 50 meters later for 10 floors and 30 meters later for 15 floors and then up to 20 floors.}, keywords = {Settlement,Hot Springs,Ground Motion Record,Seismic analysis,Zoning}, title_fa = {تاثیر ساخت و ساز بر آبدهی چشمه‌های آبگرم سرعین با استفاده از تحلیل عددی و تعیین حریم}, abstract_fa = {       هدف از تحقیق حاضر، شناسایی مجراهای آبدهی چشمه­های آب­گرم شهرستان سرعین و تأثیر احداث ساختمان­ها، بر چشمه­های آب­گرم می­باشد. در این راستا، مطالعات میدانی بر مبنای آزمایش­های ژئوفیزیک در منطقه با دستگاه­های ژئوالکتریک و ژئورادار صورت پذیرفته و نقشه­ی مسیرِ آب­گرم تهیه گردید. بر مبنای نتایج این آزمایش­ها، مسیرِ حرکتِ آب­گرم، از آبخوانِ گرمِ تحت فشار در عمق زیاد، از طریق گسیختگی­های قائم به سطح زمین در نقاط مشخص، به سطح زمین نفوذ کرده و موجب تشکیل حوض­های چشمه­ها می­گردند. برای تعیین پارامترهای مقاومتی، تعیین نوع خاک در اعماق مختلف و دانه‌بندی خاک، دو عدد لوگ گمانه  به اعماق 25 و 30 متر حفاری شده و تراز آب زیرزمینی در عمق 5/1 متر به دست آمد. به منظور مدل­سازی عددی سه حالتِ بدون وجود ساختمان و زمین به تنهایی، وجود ساختمان در تعداد طبقات 5، 10، 15، 20 و 25 طبقه و در فواصل 10 الی 210 متر با گام افزایشی 10 متر در حالت­های استاتیکی و دینامیکی تحلیل انجام پذیرفت. به منظور تحلیل دینامیکی، از شتاب نگاشتِ زلزله­ی ترکمانچای استفاده گردیده و تحلیل در نرم­افزار پلکسیس انجام گرفت. بارهای مرده و زنده در نظر گرفته شده برمبنای ساختمان­های با کاربری هتل می­باشند. برمبنای نتایج مأخوذه، تا محدوده­ی 70 متری در نقشه­ی زون­بندی شده موجود در گزارش که با رنگ قرمز مشخص شده، ساخت و ساز مجاز نبوده و در فاصله 80 متر از لبه محدوده قرمز، که با رنگ قهوه­ای نشان داده شده است، برای ساختمان‌های تا 5 طبقه و 50 متر بعد از آن برای 10طبقه و 30 متر بعد از آن برای 15طبقه و بعد از آن تا 20 طبقه تشخیص داده شد.}, keywords_fa = {نشست,چشمه های آب گرم,شتاب نگاشت,تحلیل لرزه ای,زون بندی}, url = {https://hydro.tabrizu.ac.ir/article_10454.html}, eprint = {https://hydro.tabrizu.ac.ir/article_10454_b9ff79635af0f7a729f29089b3b5f0fe.pdf} } @article { author = {Hosseni, Mahdieh Sadat and Jahanshahi, Reza and Asadi, Naser and Nasiri, Mohammad Ali}, title = {Qualitative study of groundwater resources in the Hassanabad-Dehchah, Northeast of Neyriz, Fars province}, journal = {Hydrogeology}, volume = {5}, number = {1}, pages = {150-165}, year = {2020}, publisher = {University of Tabriz}, issn = {2588-3011}, eissn = {2588-4069}, doi = {10.22034/hydro.2020.9447}, abstract = {Hydrochemistry and quality of the groundwater resources in the Hassanabad-Dehchahe plain were studied. According to the hydrograph of plain, water table was decreased about five meters during the statistical period of 13 years (2005-2017) and groundwater flow direction was from the west toward the northeast and the east. The iso-EC map showed a degradation of the water quality in the north and northwest of the study area while the groundwater quality was fairly good in the south of the region. According to the Schoeller diagram, except in one well, other groundwater samples were acceptable for drinking in the study area. Also, Wilcox diagram showed, most of the samples had fair quality for irrigation used. The mineral saturation indices shown, most of the groundwater samples were undersaturated with respect to anhydrite, gypsum and halite, and the groundwater tends to dissolve these three minerals and this affects on the groundwater chemistry. Ions ratio showed concentration of Ca and Mg is higher than bicarbonate while increasing sulfate can be due to the dissolution of sulfate minerals and reduction of Ca was due to direct cation exchange, dolomitization and or deposition of calcite. Highest salinity in the groundwater of study area were found in the dug wells. This resulted from evaporation effect on irrigation water and groundwater that confirmed by stable isotopes 2H and 18O approach. Increasing of the salinity in the groundwater had a good correlation with decreasing in the water table in the study area. Water table decreased due to low precipitation and over exploitation of the groundwater. Therefore, low rainfall, higher residence time of groundwater in the depths were caused the EC of discharged groundwater increased during time. Finally, research shows that a brackish water intrusion is happing into the freshwater aquifer as a result of high groundwater extraction.}, keywords = {Groundwater,Hydrogeochemistry,Isotope,Saturation index}, title_fa = {بررسی کیفی منابع آب زیرزمینی در محدوده‌ی حسن آباد- ده‌چاه، شمال شرق نی‌ریز، استان فارس}, abstract_fa = {هیدروشیمی و کیفی منابع آب زیرزمینی آبخوان حسن‌آباد - ده‌چاه در شمال‌شرقی شهرستان نی‌ریز در این تحقیق مورد ارزیابی قرار گرفته است. سطح آب زیرزمینی در محدوده موردمطالعه در طول دوره آماری 1396 - 1384حدود پنج متر کاهش داشته است و جهت حرکت آب زیرزمینی از غرب به سمت شمال شرقی و شرق منطقه موردمطالعه است. با توجه به نقشه‌های هم ارزش هدایت الکتریکی، کاهش کیفیت آب زیرزمینی در چاه‌های شمال و شمال غربی منطقه موردمطالعه مشهود است. با توجه به نمودار شولر و ویلکوکس بیشتر نمونه‌های آب زیرزمینی منطقه در ردیف آب‌های خوب و قابل قبول جهت مصارف آشامیدن و کشاورزی هستند. با توجه به بررسی تغییرات پارامترهای کیفی و ایزوتوپ‌های پایدار اکسیژن 18 و دوتریم، بیشترین مقادیر یون‌های اصلی و هدایت الکتریکی، در آب زیرزمینی چاه‌های دهانه گشاد منطقه دیده می‌شود. با توجه به کاهش نزولات جوی و برداشت بی رویه آب زیرزمینی، سطح ایستابی کاهش یافته است و به دلیل کاهش بارش، زمان ماندگاری بیشتر آب زیرزمینی موجود در اعماق بیشتر، و احتمالاً وجود آب زیرزمینی با مواد محلول بیشتر در عمق آبخوان، افزایش هدایت الکتریکی رخ داده است. همچنین نمودار EFE-D در ارزیابی رخساره های هیدروشیمیایی در طی اختلاط آب لب شور (چاه W10) و آب شیرین ( قنات Q2) در منطقه نشان می‌دهد آب زیرزمینی لب شور بین 7/2 تا 50 درصد به درون آب شیرین منطقه نفوذ کرده است. در این حالت تبادل کاتیونی معکوس رخ داده است و سدیم آب لب شور بوسیله ذرات آبخوان جذب شده و از محیط آبی خارج، و بوسیله کلسیم و منیزیم جایگزین شده است.}, keywords_fa = {آب زیرزمینی,اندیس اشباع,ایزوتوپ,هیدروژئوشیمی}, url = {https://hydro.tabrizu.ac.ir/article_9447.html}, eprint = {https://hydro.tabrizu.ac.ir/article_9447_c5dbbdc71c6580fe1f9ed6567a972fce.pdf} }